Schlussbericht

zum Vorhaben

Thema:

Ökologische und ökonomische Bewertung der kaskadischen Holznutzung

Zuwendungsempfänger:

Technische Universität München

Förderkennzeichen:

22005114

Laufzeit:

01.06.2014 bis 31.07.2017

Monat der Erstellung:

01/2018

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Das diesem Bericht zugrundeliegende Vorhaben wurde aufgrund eines Beschlusses des Deutschen Bundestages mit Mitteln des Bundesministeriums für Ernährung und Landwirtschaft (BMEL) über die Fachagentur Nachwachsende Rohstoffe e.V. (FNR) als Projektträger des BMEL für das Förderprogramm Nachwachsende Rohstoffe unterstützt. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Abschlussbericht

CaReWood - Cascading Recovered Wood

Teilvorhaben: Ökologische und ökonomische Bewertung der kaskadischen Holznutzung

Michael Risse, Klaus Richter

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

CaReWood – Cascading Recovered Wood
Геilvorhaben: Ökologische und ökonomische Bewertung der kaskadischen Holznutzung
Michael Risse, Klaus Richter
Гесhnische Universität München Wissenschaftszentrum Weihenstephan
Lehrstuhl für Holzwissenschaft Winzererstraße 45
80797 München Deutschland
~ ~ ~ · · · · · · · · · · · · · · · · ·

1 Inhalt

1	Inhalt	t	3
2	Abbil	dungsverzeichnis	8
3	Tabel	llenverzeichnis	12
4	Einle	itung	16
	4.1 I	Hintergrund	16
	4.2	Stand des Wissens	17
	4.3	Aufgabenstellung	19
	4.4	Zusammenarbeit mit anderen Stellen	20
5	Ergeb	onisse aus dem CaReWood-Projekt	22
		Arbeitspaket 2 – Zukünftige Verfügbarkeitsentwicklung & wiederverwendung ches Design (Future development of availability & design for reuse)	•
		Arbeitspaket 3 – Erfassungs- und Transportlogistik (Logistics of collection a tation)	
	5.3	Arbeitspaket 4 – Veredelungskonzept (The upgrading concept)	23
		Arbeitspaket 5 – Politische und soziale Akzeptanz von Recyclingheshment of social and political acceptance)	
	5.5	Arbeitspaket 6 – Arbeitspaket 6: Ökologische und ökonomische Bewertung	der
		schen Holznutzung (Ecological and economic assessment of waste wood recyclin 24	ng)
6	Ökob	ilanzielle Bewertung des CaReWood-Prozesses	25
	6.1 I	Festlegung von Ziel und Untersuchungsrahmen	25
	6.1.1	Zieldefinition	25
	6.1.2	Festlegung der Systemgrenzen	26
	6.1	.2.1 Modellierung der Produktsysteme	27
	6.1	.2.2 Funktionelle Einheit und Umgang mit Multifunktionalität	28
	6.1	.2.3 Umweltwirkungskategorien	31
	6.1	2.4 Szenarjovarjanten	31

6.2	Mode	llierung der Sachbilanz	32
6	5.2.1 Sac	chbilanz für das CaReWood-System	32
	6.2.1.1	Transport	33
	6.2.1.2	Sortierung	34
	6.2.1.3	Kappsäge	35
	6.2.1.4	Dekontaminierung und Einschnitt der Lamellen	37
	6.2.1.5	Trocknung	38
	6.2.1.6	Kappsäge	41
	6.2.1.7	Brettschichtholzfertigung	42
	6.2.1.8	Transport – Distribution des Brettschichtholzes	43
	6.2.1.9	Verbrennung der Altholzreste im CaReWood-System	44
6	5.2.2 Sac	chbilanz für das Referenzsystem Verbrennung	48
	6.2.2.1	Transport zur Verbrennungsanlage	48
	6.2.2.2	Verbrennung des Altholzes in einer KWK-Anlage im Referenzsystem.	49
6	5.2.3 Sac	chbilanzen für die Gutschriftsysteme	52
	6.2.3.1	Sachbilanz für die Produktion von Brettschichtholz aus Frischholz	52
	6.2.3.	1.1 Forstwirtschaft	53
	6.2.3.	1.2 Transport - Rundholz	53
	6.2.3.	1.3 Sägewerk	54
	6.2.3.	1.4 Verbrennung von Sägenebenprodukten in einer KWK-Anlage	55
	6.2.3.	1.5 Trocknung von Nadelschnittholz	56
	6.2.3.	1.6 Brettschichtholzherstellung aus Nadelschnittholz	56
	6.2.3.2	Sachbilanz für das Gutschriftsystem zur Produktion von Strom und W 56	Êrme
6.3	Ergeb	onisse der Wirkungsabschätzung	57
6	5.3.1 Sys	stemanalysen	58
	6311	CaReWood-System	58

6.3.1.2 Referenzsystem Verbrennung	0
6.3.2 Szenarioanalysen	51
6.3.2.1 Average-case, best-case und worst-case Szenarien	51
6.3.2.2 Analyse der Einflussparameter Klebstoffverbrauch, Holzfeuchte un Ausbeute 66	ıd
6.4 Diskussion	69
6.4.1 Diskussion der Ergebnisse aus den Systemanalysen	
6.4.2 Diskussion der Ergebnisse aus den Szenarioanalysen	
6.4.3 Diskussion der Ergebnisse zur Analyse der Einflussparameter Holzfeuchte Klebstoffverbrauch und Ausbeute	
6.4.4 Kritische Bewertung der Methodik	
6.4.5 Grenzen der Studie	
6.5 Schlussfolgerungen und Ausblick	
7 Ökonomische Bewertung des CaReWood-Prozesses	
7.1 Material und Methoden	
7.1.1 Modellierung des CaReWood-Systems	
7.1.1.1 Transport	
7.1.1.2 Manuelle Sortierung	
7.1.1.3 Trocknung	
7.1.1.4 BSH-Herstellung	
7.1.1.5 Altholzaufbereitung für die Verbrennung	
7.1.2 Modellierung des Referenzsystems: Verbrennung	
7.1.2.1 Transport	
7.1.2.2 Altholzaufbereitung für die Verbrennung	
7.1.3 Modellierung des Vergleichssystems: Produktion von BSH aus Frischholz 8	
7.1.3.1 Transport	
7.1.3.2 BSH-Herstellung	
7.1.4 Datenerhebung	
	_

7.1.4.1	Inventardaten	83
7.1.5 A	analysierte Szenarien	85
7.2 Erge	ebnisse	88
7.2.1.1 Berück	Basisszenario zur ökonomischen Bewertung des CaReWood-Systems ksichtigung verschiedener Preisszenarien	
7.2.1.2 Berück	Szenario zur ökonomischen Bewertung des CaReWood-Systems ksichtigung verschiedener Ausbeuten des CaReWood-Prozesses	
7.2.1.3		unter
7.2.1.4 Berück	Szenario zur ökonomischen Bewertung des CaReWood-Systems ksichtigung alternativer Marktpreise für das CaReWood-Produkt	
7.2.1.5 Vergle	Szenario zur ökonomischen Bewertung des CaReWood-System eich zur Herstellung von Brettschichtholz aus Frischholzlamellen	
7.2.1.6 CaReV	Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für Wood-Produkt sowie dem erzielten Gewinn	
7.2.1.7	Alternative Quantifizierung des Kostenrahmens für den CaReWood-Pr 96	rozess
7.2.1.8	Anlagengröße und Investitionsvolumen für eine CaReWood-Anlage	99
7.3 Disk	kussion und Schlussfolgerungen	100
7.3.1 K	Eritische Einschätzung der Ergebnisse	102
8 Bewertur	ng der Ressourceneffizienz der Kaskadennutzung von Holz	104
8.1 Hint	tergrund	104
8.2 Mat	erial und Methoden	104
8.2.1 S	ystemdefinition	106
8.2.2 F	unktionelle Einheit	108
8.2.3 M	Iodellierung der Sachbilanz	108
8.2.4 B	ewertung des Ressourcenverbrauchs und der Ressourceneffizienz	109
8.2.5 E	xergetische Inventardaten	110

8	3.3	Ergeb	nisse	•••••	•••••	•••••		110
	8.3.	l Exe	ergy Flow Analysis	s und Sub-S	System Effizie	nzen		110
	8.3.2	2 Exe	ergetische Lebensz	yklusbewe	rtung	•••••		112
	8.3.3	3 Kri	tische Bewertung	der Method	lik	•••••		116
	8.	3.3.1	Einfluss der Syst	emraumer	weiterung	•••••		116
	8.	3.3.2	Exergieanalyse	für die	Bewertung	der	Ressourceneffizienz	von
	m	ultifun	ktionalen Systeme	en		•••••		116
	8.	3.3.3	Grenzen der Stud	die		•••••		118
8	3.4	Schlu	ssfolgerungen und	Ausblick		•••••		118
9	Zusa	ammen	fassung			•••••		120
10	Anh	ang				•••••		122
11	Lite	raturve	erzeichnis					125

2 Abbildungsverzeichnis

Abbildung 1	Prinzip der Gutschriftmethode zum Vergleich der beiden in der	
Studie ar	nalysierten Systeme.	30
C	Systemgrenze (gestrichelte Linie) des CaReWood-Systems. Kraft-Wärme-Kopplung, BSH = Brettschichtholz	33
Kopplun	Systemgrenze (gestrichelte Linie) des Referenzsystems, der nung von Altholz in einer KWK-Anlage. KWK = Kraft-Wärmeg. AI und AIV beziehen sich auf die Altholzkategorien nach der erordnung (AltholzV 2012).	48
	Systemgrenze (gestrichelte Linie) für das Gutschriftsystem zur ing von Brettschichtholz aus Frischholz. BSH = Brettschichtholz, Kraft-Wärme-Kopplung.	53
	Beitrag verschiedener Prozessgruppen zu den Umweltwirkungen eWood-Prozesses aus dem CaReWood-System. Werte <1% werden gezeigt.	60
_	Beitrag verschiedener Prozessgruppen zu den Umweltwirkungen rennungsprozesses aus dem Referenzsystem.	61
Referenz Szenario	Umweltwirkungen des CaReWood-Systems im Vergleich zum system Verbrennung bezogen auf 1 t Altholz für das average-case . Die weißen Balken repräsentieren die Differenz aus Ziel-und ftsystem.	64
	Umweltwirkungen des CaReWood-Systems relativ zu den wirkungen des Referenzsystems für die drei Szenarien average-case, e und worst-case.	66
_	Einfluss der Ausbeute (Yield) des CaReWood-Prozesses auf die wirkungen des CaReWood-Systems, relativ zum average-case	

Abbildung 10 Einfluss des Klebstoffverbrauchs (Glue consumption) im	
CaReWood-Prozess auf die Umweltwirkungen des CaReWood-Systems,	
relativ zum average-case Szenario.	68
Abbildung 11 Einfluss der Holzfeuchte (Moisture content) des Altholzes auf die Umweltwirkungen des CaReWood-Systems, relativ zum average-case Szenario. 68	
Abbildung 12 Systemgrenzen für die ökonomische Bewertung des CaReWood- Systems, bestehend aus dem CaReWood-Prozess und der Verbrennung der Nebenprodukte. BSH = Brettschichtholz; KWK = Kraft-Wärme-Kopplung	78
Abbildung 13 Systemgrenze für die Verbrennung von Altholz in einer KWK-Anlage für die ökonomische Bewertung.	80
Abbildung 14 Systemgrenze für die ökonomische Bewertung der Produktion von Brettschichtholz (BSH) aus Frischholzlamellen.	81
Abbildung 15 Produktionskosten, Umsatz und Gewinn für das CaReWood- System im Vergleich zum Referenzsystem für drei verschiedene Preisszenarien, bezogen auf die Verwertung von 1 t Altholz.	89
Abbildung 16 Produktionskosten (exkl. Kosten für Altholz) des CaReWood- Systems für das beste, mittlere und schlechteste Preisszenario (von innen nach außen). 90	
Abbildung 17 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Ausbeuten des CaReWood-Prozesses (18%, 26%, 35%), bezogen auf die Verwertung von 1 t Altholz	91
Abbildung 18 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Marktpreise für Altholz AIII-AIV, bezogen auf die Verwertung von 1 t Altholz	92
Abbildung 19 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Marktpreise für das CaReWood-Produkt	
(320 €/m³, 300 €/m³, 280 €/m³), bezogen auf die Verwertung von 1 t Altholz	93

und dem Vergleichssystem, Brettschichtholz aus Frischholzlamellen für drei verschiedene Preisszenarien, bezogen auf die Verwertung von 1 t Altholz bzw. die Produktion von 0,651 m³ Brettschichtholz	94
Abbildung 21 Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt (jeweils in €/m³) und dem erzielten Gewinn je verarbeiteter Tonne Altholz, basierend auf dem mittleren Preisszenario und einer Ausbeute von 26% im CaReWood-Prozess. Der Altholzpreis bezieht sich auf die Entsorgungskosten für den Erzeuger. Die farblich differenzierte Wertespanne bezieht sich auf den Gewinn.	95
Abbildung 22 Potentielle Kostenrahmen für den CaReWood-Prozess (Transport bis einschl. Trocknung) ohne Verbrennung in Abhängigkeit des Altholzpreises und des Preises für Schnittholz. Für alle Produktionskosten innerhalb der markierten Flächen oberhalb der Nulllinie ist der CaReWood-Prozess kostenneutral oder gewinnbringend.	99
Abbildung 23 Systemgrenzen der Vergleichssysteme zur Bewertung der Ressourceneffizienz der Kaskadennutzung von Holz. Abbildung aus Risse et al. (2017). 108	
Abbildung 24 Exergy Flow Analysis und Sub-System Effizienzen der Vordergrundsysteme des Kaskadensystems inkl. Systemraumerweiterung auf Basis von Frischholz (C+pw) und dem Frischholzsystems (PW). Abbildung aus Risse et al. (2017)	. 112
Abbildung 25 Verbrauch primärer Ressourcen (CEENE) für beide Systeme. Für das Kaskadensystem sind die drei Varianten mit verschiedenen Energieträgern in der Systemraumerweiterung dargestellt. PW = Primärholzsystem, C+ = Kaskadensystem mit Systemerweiterung auf Basis von pw = Primärholz, ww = Altholz und g = nationaler Energiemix.	. 114
Abbildung 26 Beitrag jeweiliger Sub-Systeme zum Gesamtressourcenverbrauch (CEENE) für die analysierten Systeme. Abbildung verändert nach Risse et al. (2017) 115	

Abbildung 27	Umweltwirkungen des CaReWood-Systems im Vergleich zum	
Referenzs	system bezogen auf 1 t Altholz für das average-case, best-case und	
worst-cas	e Szenario. Die weißen Balken repräsentieren die Differenz aus Ziel-	
und Gutso	chriftsystem	123
Abbildung 28	Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis	
für das C	aReWood-Produkt und dem erzielten Gewinn je verarbeiteter Tonne	
Altholz, b	pasierend auf dem schlechtesten Preisszenario und einer Ausbeute von	
26% im	CaReWood-Prozess. Der Altholzpreis bezieht sich auf die	
Entsorgur	ngskosten für den Erzeuger. Die farblich differenzierte Wertespanne	
bezieht si	ch auf den Gewinn	124
Abbildung 29	Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis	
für das C	aReWood-Produkt und dem erzielten Gewinn je verarbeiteter Tonne	
Altholz, b	pasierend auf dem besten Preisszenario und einer Ausbeute von 26%	
im CaF	ReWood-Prozess. Der Altholzpreis bezieht sich auf die	
Entsorgur	ngskosten für den Erzeuger. Die farblich differenzierte Wertespanne	
bezieht si	ch auf den Gewinn	124

3 Tabellenverzeichnis

Tabelle 1 Übersicht über die analysierten Szenarien sowie die Werte für die analysierten Parameter (Variations). Die Transportdistanz bezieht sich auf den
Transport des Altholzes von der Anfallsstelle zur CaReWood-Anlage32
Tabelle 2 Sachbilanzdaten für den Transport des Altholzes im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016)
Tabelle 3 Parameterwerte für den Transport von Altholz im CaReWood-System
Tabelle 4 Sachbilanzdaten für die Sortierung von Altholz an der CaReWood-
Anlage. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016)
Tabelle 5 Parameterwerte für die Sortierung von Altholz an der CaReWood-Anlage 35
Tabelle 6 Sachbilanzdaten für die Kappsäge zum Auskappen von Störstoffen im CaReWood-System. EI 3.3 = Ecoinvent Datenbank (Wernet et al. 2016)
Tabelle 7 Parameterwerte für die Kappsäge zum Auskappen von Störstoffen im CaReWood-System
Tabelle 8 Sachbilanzdaten für die Dekontaminierung und Einschnitt des Altholzes im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3
(Wernet et al. 2016)
Tabelle 9 Parameterwerte für die Dekontaminierung und den Einschnitt des
Altholzes im CaReWood-System
Tabelle 10 Sachbilanzdaten für die Trocknung von Altholz im CaReWood-System. Die Werte beziehen sich auf die Trocknung von 1 m³ Lamellen mit einer
<u> </u>
Ausgangsfeuchte von u = 22% auf eine Endfeuchte von u = 13%. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016)
Tabelle 11 Parameterwerte für die Holzfeuchte des Altholzes im CaReWood-
System

Tabelle 12 Parameterwerte für die Kappsäge zum Auskappen von Holzdefekten	
im CaReWood-System.	42
Tabelle 13 Sachbilanzdaten für die Herstellung von Brettschichtholz aus Altholzlamellen im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3	
(Wernet et al. 2016).	43
Tabelle 14 Parameterwerte für die bei der Brettschichtholzfertigung aus Altholzlamellen verwendete Klebstoffmenge im CaReWood-System.	43
Tabelle 15 Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AIV mit einer Holzfeuchte von u = 22% im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016)	46
Tabelle 16 Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AI mit einer Holzfeuchte von $u=22\%$ im Referenzsystem. EI $3.3=E$ coinvent Datenbank v. 3.3 (Wernet et al. 2016)	50
Tabelle 17 Sachbilanz für die Transportprozesse im Gutschriftsystem zur Produktion von Brettschichtholz aus Frischholz. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).	54
Tabelle 18 Parameterwerte für die Transportdistanzen und den Anteil verschiedener Transportverfahren für die verschiedenen Transportprozesse im	54
Gutschriftsystem zur Produktion von Brettschichtholz aus Frischholz	54
Tabelle 20 Sachbilanzdaten für den Wärmemix für Deutschland für das Gutschriftsystem zur Produktion von Wärme und Strom. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016), EwS = Europe without Switzerland	57
Tabelle 21 Durchschnittlichen Kostendaten für einzelne Verarbeitungs- und Produktionsschritte (Stand: Frühjahr 2017). ¹ = Der Wert enthält die Kosten	

für die Überwachung der Dekontamination mit Sensortechnologien ($\sim 5 $	
Werte beziehen sich auf die Trocknung von Frischholz.	. 84
Tabelle 22 Marktpreise für die in den Systemen betrachteten Produkte und	
Rohmaterialien (Stand: Frühjahr 2017). Kosten für den Klebstoff sind in der	
BSH-Herstellung enthalten. 1 = Entsorgungskosten für den Erzeuger des	
Altholzes	. 85
Tabelle 23 Parameterwerte zur Berechnung verschiedener Szenarien unter	
Berücksichtigung unterschiedlicher Produktionskosten und Marktpreise.	
¹ = Der Wert enthält die Kosten für die Überwachung der Dekontamination mit	
Sensortechnologien (\sim 5 \in /t). 2 = Werte beziehen sich auf die Trocknung von	
Frischholz. ³ = Werte entsprechen den Entsorgungskosten von Altholz für den	
Erzeuger. 87	
Tabelle 24 Parameterwerte zur Berechnung verschiedener Szenarien unter	
Berücksichtigung unterschiedlicher Ausbeuten des CaReWood-Prozesses	. 88
Tabelle 25 Parameterwerte zur Berechnung verschiedener Szenarien unter	
Berücksichtigung unterschiedlicher Preise für Altholz. 1 = Werte entsprechen	
den Entsorgungskosten von Altholz für den Erzeuger	. 88
Tabelle 26 Parameterwerte zur Berechnung verschiedener Szenarien unter	
Berücksichtigung verschiedener Preise für das CaReWood-Produkt	. 88
Tabelle 27 Ressourceneffizienz für die beiden untersuchten Systeme sowie die	
zugehörigen Sub-Systeme. Tabelle verändert nach Risse et al. (2017)	115

Vorbemerkung

Der vorliegende Bericht enthält die für die deutsche Forst- und Holzwirtschaft relevanten Ergebnisse aus dem Arbeitspaket 6 des europäischen Forschungsprojekts "CaReWood – Cascading Recovered Wood". Weitere Ergebnisse aus dem Arbeitspaket und der Zusammenarbeit zwischen deutschen und französischen Projektpartnern mit Bezug auf die jeweilige nationalen Verhältnisse finden sich in einem gemeinsamen, eigenständigen Bericht, der zeitnah veröffentlicht wird.

In der Arbeit werden Ergebnisse aus anderen Arbeitspaketen des CaReWood-Projekts verwendet. Die Ziele und Ergebnisse der einzelnen Arbeitspakete werden am Anfang des Berichts kurz dargestellt. Eine detaillierte Beschreibung der Ergebnisse kann im Rahmen dieses Berichts allerdings nicht vorgenommen werden. An dieser Stelle muss daher auf die entsprechenden Berichte aus den Arbeitspaketen 2 bis 5 verwiesen werden.

Für die ökonomische Bewertung haben zahlreiche holzverarbeitende Unternehmen aus Deutschland Einblick in ihre Produktionskosten gegeben. An dieser Stelle sei den beteiligten Unternehmen für ihre Kooperationsbereitschaft herzlich gedankt.

4 Einleitung

4.1 Hintergrund

Derzeit ist der größte Teil menschlichen Wirtschaftens abhängig von fossilen und mineralischen Ressourcen. Doch der Klimawandel und die Endlichkeit fossiler Ressourcen fordern ein Umdenken in der Nutzung der wertvollen und limitierten Ressourcen (BMUB 2015), zuletzt bekräftigt auf dem G20-Gipfel in Hamburg (G20 Leaders' Declaration 2017). Inzwischen ist eine Transformation der fossil basierten Ökonomie zu einer zirkularen biobasierten Ökonomie ein politisches Ziel. In einer biobasierten Ökonomie sollen alle Materialien und Energieprodukte vollständig aus nachwachsenden Rohstoffen produziert werden (BMEL 2014). Vor diesem Hintergrund wird dem mengenmäßig wichtigsten nachwachsenden Rohstoff Holz eine bedeutende Rolle als Material und Energieträger zukommen. Da bereits für die nächste Dekade eine größere Nachfrage nach Holz als derzeit nachhaltig bereitgestellt werden kann prognostiziert wird (Mantau et al. 2012), erfahren Konzepte zur effizienteren Nutzung von Holz große Aufmerksamkeit. Das wichtigste in der Wissenschaft diskutierte Konzept ist die Kaskadennutzung von Holz, das in politischen Programmen auf europäischer und nationaler Ebene verankert ist (EC 2011, 2012, 2014; BMUB 2015, 2007). Die Kaskadennutzung ist definiert als die sequenzielle Nutzung einer Einheit einer Ressource in mehreren (multiplen) stofflichen Anwendungen mit der energetischen Nutzung als finalen Schritt. In erster Linie soll damit der steigenden Nachfrage nach Holzprodukten nachgekommen werden. Des Weiteren sollen die Umweltwirkungen aus der Herstellung der Produkte reduziert, die Ressourceneffizienz erhöht und die Speicherdauer des im Holz gebundenen Kohlenstoffs verlängert werden. Gleichzeitig bieten sich Möglichkeiten für die Etablierung innovativer Wirtschaftszweige und die Entwicklung neuer (Recycling-) Technologien und Produkte.

In der Praxis steht die Kaskadennutzung von Holz noch ganz am Anfang. Lediglich 30% des aus der Erstverwendung ausscheidenden Holzes (deutsche Definition nach der Altholzverordnung (AltholzV 2012): Altholz; englisch "waste wood") werden in Deutschland derzeit stofflich verwertet, meist in Spanplatten (EPF 2014). Die restlichen 70% werden nach der ersten Nutzungsphase direkt verbrannt. Lediglich in Nischenanwendungen wird massives Altholz, meist aus landwirtschaftlichen Gebäuden, z. B. zu Bodendielen verarbeitet oder in Neubauten als Designelemente eingesetzt. Vor dem Hintergrund der Ressourcenknappheit und im Vergleich mit anderen Materialien besteht folglich großes Potential und die

Notwendigkeit zu einem effizienteren Umgang mit Alt- bzw. Gebrauchtholz. Die Entwicklung und Validierung neuer Recyclingverfahren bietet daher zahlreiche ökologische und ökonomische Chancen.

4.2 Stand des Wissens

Der Begriff Kaskadennutzung wurde erstmals von Sirkin and Houten (1994) als Konzept zur nachhaltigen Nutzung von Ressourcen beschrieben. In ihrer Arbeit schreiben sie, dass eine nachhaltige Ressourcennutzung durch ein geeignetes Design der Produkte und des Herstellungsprozesses erreicht werden könnte. Eine Anwendung des Kaskadenkonzepts auf Holz erfolgte von Fraanje (1997), der das Potential der Kaskadennutzung zur Steigerung der Ressourceneffizienz und einer Reduktion der Umweltwirkungen erstmals theoretische ausarbeitete.

In Cornelissen and Hirs (2002) wurde der Verbrauch von Holz und fossilen Energieträgern zwischen der stofflichen Verwertung von Altholz in Spanplatten und der Verbrennung in einer exergetischen Lebenszyklusanalyse verglichen. Die Ergebnisse weisen auf einen niedrigeren Ressourcenverbrauch hin, wenn das Altholz als Rohstoff für Spanplatten und nicht zur Energieproduktion verwertet wird. Rivela et al. (2006) haben die ökologischen Effekte der Verwertung von Altholz in Spanplatten mit der energetischen Verwertung in einer Ökobilanz verglichen. Auch hier zeigten sich Vorteile der stofflichen Nutzung gegenüber der energetischen Nutzung. Die methodischen Aspekte zur Berücksichtigung Abfallverwertung in Produktökobilanzen für Holzprodukte wurden von Werner et al. (2007) zusammenfassend beschrieben.

Die Bewertung der ökologischen Effekte der Kaskadennutzung erfolgte in einer Arbeit von Sathre and Gustavsson (2006), die den Primärenergieverbrauch und die Kohlenstoffbilanz von Holzkaskaden untersuchten. Sowohl der Primärenergieverbrauch als auch die Kohlenstoffbilanz werden in der Studie maßgeblich durch die Landflächenbelegung und Substitutionseffekte beeinflusst. Ein Vergleich des Treibhauspotentials zwischen der Kaskadennutzung von Holzprodukten und der energetischen Verwertung des Holzes erfolgte durch Sikkema et al. (2013). Die Studie zeigt, dass die größten Treibhausgaseinsparungen durch eine Kombination der stofflichen und energetischen Substitution sowie einer temporären Kohlenstoffspeicherung erzielt werden können.

Arbeiten zur ökologischen Bewertung der Kaskadennutzung von Holz auf Basis der Ökobilanzierung stammen von Gärtner et al. (2013), Höglmeier et al. (2014) und Höglmeier et al. (2015). Gärtner et al. (2013) hat die Umweltwirkungen der Kaskadennutzung von Holz im Vergleich zu Nicht-Holzprodukten mit Hilfe der Ökobilanzierung untersucht. Sie kommen zu dem Schluss, dass die Kaskadennutzung von Holz vorteilhaft gegenüber einer alternativen Nutzungsweise ist und die Vorteile mit zunehmender Zahl an Kaskadenstufen ansteigen.

In Höglmeier et al. (2014) wurde die Kaskadennutzung von Altholz mit der Produktion des gleichen Outputs aus Frischholz ebenfalls auf Basis einer Ökobilanz verglichen. Die Autoren schlussfolgern, dass die Kaskadennutzung vorteilhaft ist gegenüber der konventionellen Nutzung von Holz. Allerdings werden die Ergebnisse sehr stark durch die Systemannahmen in der methodisch verwendeten Systemraumerweiterung beeinflusst.

Ein erster Schritt um die indirekten Effekte der Kaskadennutzung zu bewerten wurde von Höglmeier et al. (2015) durchgeführt. Ausgehend von den aktuellen Stoffströmen von Holz wurden die ökologischen Effekte einer Umlenkung einzelner Stoffströme in verschiedenen Szenarien bewertet. Insgesamt zeigt auch hier die Kaskadennutzung positive Umwelteffekte im Vergleich zu den aktuellen Nutzungsszenarien.

Die Arbeit von Bais-Moleman et al. (2017) zielte darauf ab, das Potential der Kaskadennutzung von Holz zur Reduktion von Treibhausgasemissionen bei gleichzeitiger Steigerung der Holznutzungseffizienz auf Basis eines Stoffstrommodells zu bewerten. Die Ergebnisse zeigen, dass bei einer Kaskadennutzung die Effizienz der Holznutzung ansteigt, es allerdings kurzfristig zu Einbußen bei den Einsparungen an Treibhausgasen aufgrund der geringeren Energieproduktion aus Altholz kommt.

Die Arbeiten zu den Abfallbewertungsverfahren von Altholz beschränken sich in der stofflichen Nutzung meist auf die Verwertung in Spanplatten, wie es auch der derzeitigen Praxis in Deutschland entspricht. Studien zur Bewertung von neuartigen Recyclingverfahren für Vollholz in Form einer Potentialstudie sind nicht bekannt. Die Ergebnisse der bisherigen Arbeiten sind oft durch die Wahl der Methoden und Prozessannahmen stark beeinflusst und maßgeblich für die Schlussfolgerungen verantwortlich. Die Weiterentwicklung der Bewertungsmethoden für Kaskadensysteme auf Basis nachwachsender Rohstoffe ist daher essentiell. Für die Bewertung der Ressourceneffizienz sollte eine lebenszyklusorientierte und ganzheitliche Berücksichtigung des Verbrauchs an primären Ressourcen angestrebt werden.

4.3 Aufgabenstellung

Zur Etablierung einer Kaskadennutzung bedarf es innovativer Recyclingverfahren zur Aufarbeitung und Verwertung von Altholz. Insbesondere die Nutzung von Altholz in Vollholzanwendungen scheint vielversprechend. Vollholzprodukte haben zahlreiche Nutzungsmöglichkeiten und stellen in der Regel die qualitätiv und ökologisch hochwertigsten Holzprodukte dar. Der weitgehende Erhalt der Qualität und Dimensionen von massivem Altholz beim Recyclingprozess ist daher ein konzeptionelles Ziel. Im CaReWood-Projekt sollen die Grundlagen für die dazu notwendige technische Aufarbeitung von massivem Altholz und dessen Verarbeitung zu neuen hochwertigen Vollholzprodukten entwickelt werden. Mit der Ausarbeitung eines neuen Recyclingverfahrens wird ein wichtiger Beitrag zur Etablierung der Kaskadennutzung geleistet. Am Ende steht ein standardisierter Vollholzwerkstoff, der in verschiedenen Produkten Anwendung finden kann. Der Prozess soll für massive Althölzer der Kategorien AI-AIV geeignet sein, sodass die Dekontaminierung und Detektion von Holzschutzmitteln essentieller Bestandteil der Projektinhalte ist.

Im hier beschriebenen Teilvorhaben soll der entwickelte CaReWood-Prozess hinsichtlich seiner ökologischen und ökonomischen Tragfähigkeit analysiert werden. Dabei geht es um die Frage, ob der zusätzliche Aufwand für die Auf- und Verarbeitung des Altholzes durch das bereitgestellte Produkt gerechtfertigt wird. Durch den Vergleich der verursachten Umweltwirkungen mit einer alternativen Herstellung des bereitgestellten Produkts kann die ökologische Performance des Prozesses beurteilt werden. In einer Szenarioanalyse sollen die wesentlichen Parameter und Arbeitsschritte im CaReWood-Prozess identifiziert werden, die einen hohen Einfluss auf die Ergebnisse sowie eine besondere Sensitivität gegenüber Veränderungen aufweisen. Die Ergebnisse der Szenarioanalyse können schließlich für eine technische Optimierung des Prozesses herangezogen werden. Des Weiteren soll die Verwertung des Altholzes im CaReWood-Prozess im Vergleich zu alternativen Verwertungsverfahren ökologisch konkurrenzfähig sein. Um eine ökobilanzielle Bewertung des CaReWood-Prozesses zu ermöglichen, gehört die Erarbeitung eines Systemdiagramms in Anlehnung an die technischen Arbeitspakete zur ersten Aufgabe des Forschungsvorhabens. Anschließend muss eine repräsentative Sachbilanz modelliert werden, die gleichzeitig den Vergleich mit alternativen in der Praxis implementierten Altholzverwertungsverfahren ermöglicht.

Für die praktische Etablierung des Prozesses ist seine ökonomische Rentabilität ebenso von Bedeutung. Dazu sollen zunächst detaillierte Kostendaten für einzelne Produktionsschritte in der Holzverarbeitung gesammelt werden, um die notwendigen Verarbeitungsschritte des CaReWood-Prozesses in der Bewertung bestmöglich abbilden zu können. Im Anschluss soll eine Potentialstudie zur Wirtschaftlichkeit des CaReWood-Prozesses ausgearbeitet werden. Die Modellierung des ökonomischen Bewertungssystems soll in Anlehnung an das Modell der Ökobilanzierung erfolgen. Mit der Potentialstudie sollen die wesentlichen Kostentreiber und relevanten Einflussfaktoren für den Prozess identifiziert sowie die potentiellen Investitionskosten für eine CaReWood-Anlage ermittelt werden.

Die Kaskadennutzung von Holz wird oftmals als Option zur Steigerung der Ressourceneffizienz der Holznutzung angesehen. Während die meisten Studien zur ökologischen Bewertung der Kaskadennutzung den Fokus auf die Umweltwirkungen gelegt haben, blieb die Ressourceneffizienz oftmals unberücksichtigt. Aus diesem Grund sollen Methoden zur Berechnung der Ressourceneffizienz von Kaskadensystemen erarbeitet und exemplarisch in einer Fallstudie angewandt werden.

4.4 Zusammenarbeit mit anderen Stellen

Das Forschungsvorhaben wurde in Zusammenarbeit des Lehrstuhls für Holzwissenschaft der Technischen Universität München (TUM) mit der École Supérieure du Bois (ESB) in Nantes, Frankreich und dem Institute Technologique (FCBA) in Champs-sur-Marne, Frankreich, durchgeführt. Die Zusammenarbeit erfolgte im Rahmen des Europäischen Wood-Wisdom Forschungsprojektes "CaReWood - Cascading Recovered Wood" als Arbeitspaket 6 (siehe auch Abschnitt 5.5). Das Arbeitspaket sowie das Gesamtprojekt wurden von der TUM koordiniert. Der vorliegende Abschlussbericht stellt die für die deutsche Forst- und Holzwirtschaft relevanten Ergebnisse des Arbeitspakets 6 vor.

Eine weitere Zusammenarbeit erfolgte mit der Professur für Holztechnologie der Aalto University in Helsinki, Finnland, zur Bewertung der Ressourceneffizienz von Holzkaskaden. Die Kooperation bestand in der inhaltlichen Abstimmung beider Institute, um Doppelspurigkeiten bei der Bearbeitung gleicher Forschungsfragen im Rahmen des CaReWood-Projektes zu vermeiden.

Zur Datenakquise wurde im Rahmen des Forschungsvorhabens mit einzelnen Industriepartnern aus dem CaReWood-Projekt zusammengearbeitet. Der Großteil der Daten

stammt jedoch aus der eigens für das CaReWood-Projekt konzipierten Befragung von Unternehmen aus Deutschland außerhalb des Konsortiums.

5 Ergebnisse aus dem CaReWood-Projekt

5.1 Arbeitspaket 2 – Zukünftige Verfügbarkeitsentwicklung & wiederverwendungsfreundliches Design (Future development of availability & design for reuse)

Das Ziel von Arbeitspaket 2 war die Ermittlung des zukünftigen Altholzaufkommens in den Partnerländern sowie die Entwicklung eines Design-for-Recycling Konzepts für Holzprodukte. Ausgehend von Daten für Österreich wurde ein Modell entwickelt, anhand dessen die zukünftige Entwicklung des Holzanteils in Wohngebäuden vorhergesagt werden kann. Daraus lässt sich die jährliche Menge des zukünftig verfügbaren Altholzes abschätzen, die für eine stoffliche oder energetische Nutzung zur Verfügung steht. In dem Modell wurden unterschiedliche bauliche Konstruktionsperioden berücksichtigt, um Rückschlüsse auf die Qualität und Zusammensetzung des Altholzes zu ermöglichen (z. B. verstärkter Einsatz von Holzschutzmitteln zwischen 1960-80). Als wesentliches Ergebnis ist festzuhalten, dass sich in Österreich der Holzanteil im Gebäudebestand von heute bis ins Jahr 2100 von 32 Mio. m³ auf über 50 Mio. m³ erhöhen wird. Parallel dazu wird die daraus jährlich zur Verfügung stehende Altholzmenge ebenfalls ansteigen.

Neben dem Vorhersagemodell wurde ein Konzept zur Entwicklung eines Holz-Aluminium-Fensters ausgearbeitet, mit dem Ziel das Fenster nach der Nutzungsphase leichter in seine materiellen Bestandteile zerlegen und einem effizienteren Recycling zuführen zu können. Die Validierung des Design-for-Recycling Fensters erfolgte in Zusammenarbeit mit einem Industriepartner.

5.2 Arbeitspaket 3 – Erfassungs- und Transportlogistik (Logistics of collection and transportation)

In Arbeitspaket 3 wurde die Frage bearbeitet, ob die Erfassungs- und Transportlogistik für Altholz ein nachhaltiges und wirtschaftliches Geschäftsmodell sein kann. Dabei umfasst der Begriff Logistik nicht nur die Transportdienstleistung, sondern auch die Standorte und Kapazitäten der Altholzverarbeitungsanlagen. Zur Beantwortung der Frage wurde ein Computermodel entwickelt, um den optimalen Standort für neue Altholzverarbeitungsanlagen, insbesondere der CaReWood-Anlage, identifizieren zu können. Die dazu notwendigen Input-Parameter umfassen u. a. geografische Daten zu den Standorten von bestehenden Anlagen, Altholzmengen sowie Transportkosten und -emissionen. Die

Auswahl der neuen Standorte erfolgt unter der Optimierung der Transportdistanzen, -kosten und -emissionen und gewährt gleichzeitig eine Wirtschaftlichkeit des Standorts in Abhängigkeit von der potentiellen jährlichen Verarbeitungsmenge. Die optimalen Standorte werden schließlich auf einer Karte visuell dargestellt. Neben der Entwicklung der Software konnten bereits für Slowenien, Österreich und Deutschland erste Ergebnisse berechnet werden. Die Ergebnisse umfassen die potentiellen Standorte der CaReWood-Anlagen, deren Jahreskapazität sowie die minimalen und maximalen Transportdistanzen auf Länderebene. Die für Deutschland errechneten Transportdistanzen wurden in dem in diesem Bericht dargestellten Teilvorhaben zur ökonomischen und ökologischen Bewertung des Prozesses (Arbeitspaket 6) verwendet.

5.3 Arbeitspaket 4 – Veredelungskonzept (The upgrading concept)

In Arbeitspaket 4 wurde der technische Aufarbeitungsprozess von massivem Altholz entwickelt. Ziel war es zu beurteilen, ob die Verarbeitung von massivem Altholz zu dekontaminierten und großformatigen Brettschichtholzprodukten technisch möglich ist. Dazu wurden zunächst Daten zur Dimension, Holzfeuchte, Holzart und dem Auftreten von Verunreinigungen wie Metallteilen und Holzschutzmitteln an mehr als 300 Altholzproben erhoben. Im Anschluss daran wurde ein Sägemodell entwickelt, das den technischen Aufarbeitungsprozess mit allen notwendigen Arbeitsschritten simuliert. Ausgehend von den erhobenen Altholzdaten wurde das Modell anschließend dahingehend erweitert, die optimale Lamellengröße im Sinne einer maximalen Ausbeute für jede kartierte Altholzprobe zu bestimmen. Die daraus berechneten Werte für die Ausbeute des CaReWood-Prozesses wurden in Arbeitspaket 6 in der Ökobilanzierung verwendet. Ferner bildet die konzeptuelle Ausarbeitung des Sägemodells die Grundlage für das System in der Ökobilanzierung und der ökonomischen Bewertung. Anschließend wurde das Modell mit der experimentellen Aufarbeitung des Altholzes zu neuem Brettschichtholz validiert. Neben der konzeptuellen Ausarbeitung des CaReWood-Prozesses wurden bestehende Technologien zum Detektieren von Holzschutzmitteln weiterentwickelt. So ist es heute möglich, organische und anorganische Holzschutzmittel über spektroskopische Verfahren wie NIR oder XRF auch in geringen Konzentrationen in einem automatisierten online Prozess zu detektieren. Auf diese Weise können aus den Altholzkategorien AIII und AIV das oberflächlich mit Holzschutzmitteln kontaminiertes Altholz aus dem Prozess aussortiert und die unbelasteten Anteile für die stoffliche Nutzung verwendet werden.

5.4 Arbeitspaket 5 – Politische und soziale Akzeptanz von Recyclingholz (Establishment of social and political acceptance)

In Arbeitspaket 5 wurden die Potentiale und Hürden der Kaskadennutzung von massivem Altholz seitens verschiedener Stakeholder untersucht. In einer Umfrage wurden zunächst Industrievertreter nach ihrer Einschätzung zum Potential und zu den Hürden der Vollholznutzung von Altholz befragt. Die Ergebnisse deuten darauf hin, dass Industrievertreter eher ökonomische als technische Hürden sehen, z. B. zu hohe Kosten. Insgesamt zeigen sich aber grundsätzliche Vorbehalte seitens der Industrie gegenüber der Aufarbeitung von Altholz. Diese Beobachtungen stehen im Gegensatz zu den Ergebnissen aus einer Umfrage mit Verbrauchern. Diese zeigen sich grundsätzlich aufgeschlossen gegenüber Produkten aus Altholz und würden das Altholzprodukt dem Frischholzprodukt vorziehen, wenn dieses günstiger wäre. Insbesondere ist die Bereitschaft zum Kauf von Altholzprodukten gegeben, wenn die Produkte als umweltfreundlich oder ressourcenschonend gekennzeichnet sind.

5.5 Arbeitspaket 6 – Arbeitspaket 6: Ökologische und ökonomische Bewertung der kaskadischen Holznutzung (Ecological and economic assessment of waste wood recycling)

Das Arbeitspaket 6 entspricht weitestgehend dem im Folgenden ausführlich dargestellten nationalen Forschungsvorhaben zur ökologischen und ökonomischen Bewertung des CaReWood-Prozesses. Der geographische Bezug des Arbeitspakets 6 geht jedoch über die Grenzen Deutschlands hinaus und erfasst die Altholzverwertung in Europa. Die Ergebnisse des Arbeitspakets 6 werden in einem gesonderten Abschlussbericht präsentiert.

6 Ökobilanzielle Bewertung des CaReWood-Prozesses

6.1 Festlegung von Ziel und Untersuchungsrahmen

Zur Bewertung des CaReWood-Systems wurde die Methodik der Ökobilanzierung verwendet. Die Ökobilanzierung ist eine Methode zur Abschätzung der mit der Bereitstellung eines Produkts oder einer Dienstleistung verbundenen Umweltwirkungen. Die Ökobilanz untersucht dabei die potentiellen Umweltwirkungen entlang des gesamten Lebenswegs, von der Wiege bis zur Bahre (DIN EN ISO 14044:2006-10; DIN EN ISO 14040:2009-11). Neben der Bewertung und dem Vergleich von Produktsystemen, wird die Ökobilanzierung traditionell für den Vergleich von verschiedenen Abfallverwertungskonzepten und Recyclingverfahren eingesetzt. Da es sich beim CaReWood-Prozess ebenfalls um ein in der Entwicklung befindliches Konzept zum Recycling bzw. zur Wiederverwertung von Holz handelt, wurde die Ökobilanz als geeignete Methodik zur Bewertung des Verfahrens angesehen.

6.1.1 Zieldefinition

Derzeit werden in Deutschland zwischen 50% und 70% (Meinlschmidt et al. 2013) der potentiell nutzbaren Holzanteile thermisch verwertet, von dem jedoch nur ein kleinerer Anteil (i. d. R. Oberflächenzonen) mit Holzschutzmittels und Beschichtungsstoffen verunreinigt ist. In Hinblick auf die steigende Nachfrage nach Holz, dem politischen Wunsch nach einer biobasierten Ökonomie und der Implementierung einer Kreislaufwirtschaft, stellt sich die Frage nach einer alternativen, d. h. stofflichen Nutzung des AIII-AIV Holzes im Sinne einer Kaskadennutzung. Ziel des Teilvorhabens ist es daher, die potentiellen Umweltwirkungen des CaReWood-Systems zu analysieren und das Verfahren mit alternativen Entsorgungswegen für Altholz in einer Ökobilanz zu vergleichen. Dazu wird zunächst ein Modell in Anlehnung an den in Arbeitspaket 4 entwickelten technologischen Prozess ausgearbeitet. Da der CaReWood-Prozess in der Praxis nicht existiert, müssen die Sachbilanzdaten aus bestehenden Inventardaten zusammengestellt werden. Anschließend kann die Bewertung Umweltwirkungen durchgeführt werden. Ausgehend von den Ergebnissen lassen sich Schlussfolgerungen zum Umgang von Altholz der Kategorie AIII-AIV unter ökologischen Gesichtspunkten ziehen. Bei der Interpretation der Ergebnisse sind insbesondere die methodischen Annahmen zu berücksichtigen. Über die Bewertung des CaReWood-Prozesses

lassen sich die wesentlichen Einflussfaktoren des Prozesses identifizieren und Möglichkeiten zur Optimierung des CaReWood-Systems nach ökologischen Aspekten aufzeigen.

Im Arbeitspaket 6 des CaReWood-Projektes wurden die in Europa üblichen Altholzverwertungsoptionen bewertet. Dazu gehört die stoffliche Nutzung in Spanplatten, die Deponierung sowie die Verbrennung mit Energiegewinnung. Die Ergebnisse finden sich in einem eigenständigen Abschlussbericht. Für den vorliegenden nationalen Bericht wurde ausschließlich der für Deutschland relevante Entsorgungsweg analysiert, d. h. die Verbrennung des Altholzes in einer Verbrennungsanlage mit Kraft-Wäre-Kopplung (KWK-Anlage).

Derzeit ist die stoffliche Nutzung von Altholz der Kategorien AIII-AIV nur nach Reinigung bzw. gar nicht zugelassen (AltholzV 2012). Im Rahmen dieses Forschungsvorhabens wurde daher davon ausgegangen, dass bei einer erfolgreichen und nachweisbaren Dekontaminierung der Holzoberfläche durch den CaReWood-Prozess die stoffliche Verwertung des auf diese Weise aufgearbeiteten Altholzes aller Klassen von AI-AIV zulässig ist. Ausdrücklich ausgeschlossen ist also z. B. druckimprägniertes Holz, bei dem die Holzschutzmittel tief in den Holzkörper eingedrungen sind.

Für die tatsächliche Etablierung des Prozesses in der Praxis wäre in Deutschland eine Anpassung der Altholzverordnung notwendig. Die Untersuchungen im Rahmen des CaReWood-Projektes sollen Informationen und Sachdaten für eine mögliche Novellierung der Altholzverordnung liefern.

6.1.2 Festlegung der Systemgrenzen

In der vorliegenden Studie wurde das CaReWood-System mit der in Deutschland üblichen Verwertung des Altholzes der Kategorien AIII-AIV, der direkten Verbrennung in einer KWK-Anlage zur Energieproduktion, verglichen. Beide Systeme beginnen mit der Sammlung von 1 t massiven Altholzes aus Abriss oder Renovierung. Es wird davon ausgegangen, dass das Holz mit Holzschutzmitteln behandelt ist. In Abhängigkeit des vorangegangen Verwendungszwecks ist das Altholz vermutlich mit Metallteilen, Kunststoffen oder mineralischen Baustoffen verunreinigt. Es wird angenommen, dass das Material zu dem Zeitpunkt das Ende des ersten Produktlebensweges erreicht hat und somit als Abfall

klassifiziert wird und daher frei von Umweltlasten aus dem vorangegangenen Lebenszyklus ist.

Die Studie erfolgte in Anlehnung an die ISO 14040/14044 zur Durchführung von Ökobilanzen (DIN EN ISO 14044:2006-10; DIN EN ISO 14040:2009-11). Es wurde ein beschreibender Modellierungsansatz gewählt. Das bedeutet für den Vergleich, dass beide Entsorgungsoptionen existieren und durch die Entscheidung für eine Variante keine marktwirtschaftlichen Konsequenzen auftreten. Da mittels der Studie entscheidende Einflussgrößen und Prozessschritte auf die Gesamtergebnisse identifiziert werden sollen, wird die beschreibende Ökobilanz als geeigneter Modellierungsansatz angesehen.

6.1.2.1 Modellierung der Produktsysteme

CaReWood-System

Das CaReWood-System setzt sich aus dem CaReWood-Prozess und dem Verbrennungsprozess zur Beseitigung der mit Holzschutzmitteln kontaminierten Nebenprodukte wie Abschnitte oder Sägemehl zusammen. Die Modellierung des Systems basiert auf den Ergebnissen aus Arbeitspaket 4, in dem der CaReWood-Prozess technologisch ausgearbeitet wurde (siehe Abschnitt 5.3). Die Daten zu den Transportdistanzen stammen aus Arbeitspaket 3 (siehe Abschnitt 5.2). Das CaReWood-System beginnt mit dem Transport des Altholzes von der Anfallsstelle. Der Abriss- oder Rückbau des Gebäudes wurde aufgrund fehlender Inventardaten nicht modelliert. Für das CaReWood-System wird der direkte Transport von der Anfallsstelle zur CaReWood-Anlage angenommen. Ein Zwischenschritt bei einem Altholzaufbereiter wie er heute manchmal üblich ist, entfällt. In der CaReWood-Anlage wird das Altholz sortiert, dekontaminiert und anschließend zu lamelliertem Schichtholz (z.B. BSH) verarbeitet. Es wird angenommen, dass die Lamellen, frei von schädlichen Kontaminierungen wie Metallteilen oder Holzschutzmitteln sind. Frei heißt in diesem Fall, dass die chemischen Verunreinigungen unter der jeweils zulässigen Höchstkonzentration liegen. Es muss davon ausgegangen werden, dass die Altholzlamellen aufgrund des Verarbeitungsprozesses geringere Querschnittsabmessungen aufweisen sowie insgesamt kürzer sind als Lamellen aus Frischholz. Aus diesem Grund ähnelt das Schichtholz aus Altholzlamellen vermutlich in seinen Dimension eher Fensterkanteln als großformatigen BSH-Trägern, die in einem identischen Prozess hergestellt werden. Dennoch wäre es größere BSH-Dimensionen aus Altholzlamellen durch technisch möglich, auch

Verklebungsprozesse zu fertigen. Eine Verwendung des BSH aus Altholz in konstruktiven, insbesondere in tragenden Anwendungen wird vorerst ausgeschlossen; sie könnte erst durch die notwendigen Zulassungsprüfungen nach DIN EN 408 (DIN EN 408:2012-10) erfolgen. Trotz dieser Unterschiede zwischen dem BSH aus Alt- und Frischholz, wurde für diese Arbeit von einer technischen Funktionsgleichheit beider Produkte ausgegangen, um einen ökobilanziellen Vergleich zu ermöglichen. Die möglichen Auswirkungen der unterschiedlich dimensionierten Altholzlamellen auf den BSH-Fertigungsprozess wurden in verschiedenen Szenarioanalysen untersucht.

Während des CaReWood-Prozesses fallen aussortierte Altholzteile, Abschnitte und Sägemehl, meist mit Holzschutzmitteln oder anderen Verunreinigungen versetzt, als Abfälle an. Es wird davon ausgegangen, dass dieses Material in einer werkseigenen KWK-Anlage verbrannt wird. Die dadurch erzeugte Energie in Form von Strom und Wärme wird als Prozessenergie verwendet. Die überschüssige Energie wird gegen Vergütung in das Versorgungsnetz eingespeist.

Referenzsystem Verbrennung

Das Referenzsystem beschreibt die direkte Verbrennung von 1 t Altholz in einer dafür geeigneten Verbrennungsanlage mit Kraft-Wärme-Kopplung zur Gewinnung von Strom und Wärme. Die Verbrennung beschreibt das heute übliche Entsorgungsverfahren für Altholz der Kategorien AIII-AIV in Deutschland.

Das System beginnt ebenfalls mit dem Transport des Altholzes von der Anfallsstelle zur Verbrennungsanlage. Dort wird das Altholz gehackt, sortiert und anschließend verbrannt. Die überschüssige Energie in Form von Strom und Wärme wird gegen Vergütung in das Versorgungsnetz eingespeist.

6.1.2.2 Funktionelle Einheit und Umgang mit Multifunktionalität

Die primäre Funktion der beiden Systeme ist die Entsorgung von massivem Altholz aus Abriss und Renovierung. Aus diesem Grund wurde die funktionelle Einheit wie folgt definiert: "Entsorgung von 1 t massivem Altholz aus Abriss oder Renovierung". Für das Altholz wurde von Nadelholz (Fichte/Tanne) ausgegangen und eine mittlere Holzfeuchte ab Anfallsstelle von u = 22% festgelegt. Der Wert stammt aus den Messungen an Altholzproben aus Arbeitspaket 4. Die Darrdichte des Holzes wurde mit 387,2 kg/m³ festgelegt.

Neben der funktionellen Einheit, die von beiden beschriebenen Systemen erfüllt wird, werden in beiden Systemen jeweils weitere Zusatznutzen bereitgestellt. Im CaReWood-System wird neben der eigentlichen Entsorgung des Altholzes als Zusatznutzen das CaReWood-Produkt sowie Energie in Form von Strom und Wärme produziert. Im Referenzsystem werden neben der Entsorgung des Altholzes Strom und Wärme als Zusatznutzen bereitgestellt. Wenn ein System mehrere Funktionen oder Nutzen bereitstellt, wird von multifunktionalen Systemen oder Multifunktionalität gesprochen. Je größer die Systeme und je mehr Systeme miteinander verglichen werden sollen, desto komplexer wird die Multifunktionalität. Damit die Umweltwirkungen beider Systeme jedoch miteinander verglichen werden können, muss die Nutzengleichheit beider Systeme erreicht werden. Für multifunktionale Systeme ist die Gutschriftmethode als Variante der Systemraumerweiterung geeignet, Nutzengleichheit zwischen den Systemen abzubilden und gleichzeitig die Komplexität der Systeme zu reduzieren (Klöpffer and Grahl 2009). Der Vorteil der Gutschriftmethode gegenüber der Nutzenkorbmethode ist die vereinfachte funktionelle Einheit und die weniger komplexe Modellierung beim direkten Vergleich von mehr als zwei Systemen.

Bei der Gutschriftmethode werden dem Zielsystem die Umweltwirkungen eines durch den Zusatznutzen substituierten Vergleichsprodukts gutgeschrieben. Die Methode beruht auf der Annahme, dass das Produkt über einen alternativen Prozess produziert worden wäre, wenn es nicht als Produkt aus dem Abfallverwertungsprozess entstehen würde. Für die Bilanzierung werden die Umweltwirkungen des substituierten Produktes von den Umweltwirkungen des Zielsystems subtrahiert. In Abhängigkeit von der Höhe der Umweltwirkungen ergeben sich positive oder negative (d. h. eingesparte) Umweltwirkungen für das Zielsystem.

Die Gutschriftmethode eignet sich insbesondere für komplexe, multifunktionale Systeme, die mit mehreren Referenzsystemen verglichen werden sollen. Allerdings werden die Ergebnisse des Vergleichs stark von den Annahmen für die substituierten Produkte beeinflusst. Der Einfluss kann so weit gehen, dass bei unterschiedlichen Annahmen für substituierte Produkte, die Ergebnisse und Schlussfolgerungen für das Zielsystem komplett gegenläufig sind. Für die Wahl der substituierten Produkte gibt es kein "richtig oder falsch" solange die Wahl plausibel ist. Dies macht die Gutschriftmethode anfällig für die gezielte Einflussnahme auf die Ergebnisse durch Wahl eines bestimmten Gutschriftsystems. In anderen Fällen kann es sehr schwierig sein, ein passendes Gutschriftsystem zu definieren. Insbesondere gegenüber Entscheidungsträgern ist eine transparente Kommunikation der Methoden- und

Systemdefinition notwendig. Im Idealfall werden verschiedene Systemvarianten berechnet, um den Einfluss der Gutschriftsysteme beurteilen zu können.

In der vorliegenden Studie wurden die in Abbildung 1 dargestellten Systeme und gutgeschriebenen Produkte definiert und verglichen. Für das CaReWood-System wird angenommen, dass das BSH aus Altholz BSH aus Frischholz substituiert. Die überschüssige Energie in Form von Strom und Wärme substituiert Strom und Wärme aus konventionellen, meist fossilen Energieträgern, repräsentiert durch den nationalen Strom- und Wärmemix. Der nationale Strom- und Wärmemix sind ebenfalls die substituierten Produkte im Referenzsystem Verbrennung.

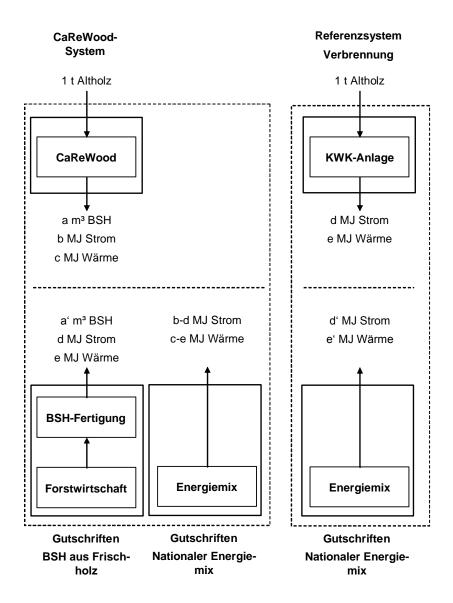


Abbildung 1 Prinzip der Gutschriftmethode zum Vergleich der beiden in der Studie analysierten Systeme.

6.1.2.3 Umweltwirkungskategorien

Zum Vergleich der Systeme wurden die folgenden Umweltwirkungskategorien in der Wirkungsabschätzung ausgewertet. Zur Berechnung der Umweltwirkungen wurde die CML Methode verwendet (Guinée 2002). Ergänzend wurde die Kategorie Landflächenbelegung aus der ReCiPe Methodik ausgewiesen (Goedkopp et al. 2009).

- Treibhausgaspotential fossil (GWP fossil)
- Treibhausgaspotential inkl. biogenes CO₂ (GWP bio)
- Versauerungspotential (AP)
- Eutrophierungspotential (EP)
- Humantoxizitätspotential (HTP)
- Ozonabbaupotential (ODP)
- Landflächenbelegung (ALO)

6.1.2.4 Szenariovarianten

Zur Analyse der Umweltwirkungen des CaReWood-Systems in Abhängigkeit bestimmter Prozesse und Parameter wurden drei ergänzende Szenarien berechnet: Average-case, best-case und worst-case Szenario. In den drei Szenarien werden die als besonders relevant eingeschätzten Einflussparameter gemeinsam verändert. Die wesentlichen Einflussparameter sind die Transportdistanz von der Anfallsstelle zur CaReWood-Anlage, die Holzfeuchte des Altholzes, die Ausbeute des CaReWood-Prozesses sowie der Bedarf an Klebstoff bei der Herstellung des CaReWood-Produktes.

Die Holzfeuchte des Altholzes hat auf mehrere Prozesse Einfluss. Zunächst erhöht sich mit der Holzfeuchte das Gewicht des Holzes, sodass der Transportaufwand erhöht ist. Des Weiteren hat Holz mit einer erhöhten Holzfeuchte einen reduzierten Heizwert, sodass die produzierbare Energie absinkt. Eine hohe Holzfeuchte macht außerdem die Trocknung des Holzes notwendig, was mit einem hohen Energieaufwand verbunden ist.

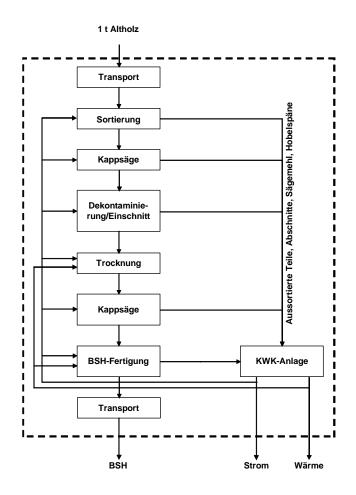
Die Ausbeute des CaReWood-Prozesses bestimmt die Menge des erzeugten Brettschichtholzes im CaReWood-System sowie der analog dazu erzeugten Energie. Ferner bestimmt die Ausbeute des Prozesses die Höhe der Gutschrift durch die Substitution von Brettschichtholz aus Frischholz bzw. der Substitution von Energie.

Der dritte Parameter ist der Verbrauch von Klebstoffen für die Produktion des Brettschichtholzes. Da erwartet wird, dass die Altholzlamellen kleiner sind als Frischholzlamellen, wird mit einem erhöhten Klebstoffverbrauch für Keilzinkung und Flächenverklebung gerechnet. Da die Produktion der Klebstoffe mit hohen Umweltwirkungen verknüpft ist, wird ein relevanter Einfluss des Klebstoffverbrauchs auf die Umweltwirkungen des CaReWood-Systems erwartet.

Die Werte für die Transportdistanzen stammen aus dem Arbeitspaket 3 des CaReWood-Projekts. Alle übrigen Parameterwerte im average-case Szenario basieren auf den Arbeiten aus dem Arbeitspaket 4. Die Werte für das best-case und das worst-case Szenario wurden als Abweichungen von ±20% vom average-case Szenario berechnet. Die Parameterwerte für die Szenarien sind in Tabelle 1 zusammengefasst. Sie sind außerdem ergänzend zu den Beschreibungen der Sachbilanzen für jeden Prozess ab Abschnitt 6.2 dargestellt.

Neben den drei Hauptszenarien wurde jeder der Einflussparameter (bis auf die Transportdistanz) separat hinsichtlich seines Einflusses auf die Umweltwirkungen des CaReWood-Systems analysiert. Ausgehend von dem average-case Szenario wurde der zu analysierende Parameter verändert, während die anderen konstant gehalten wurden.

Tabelle 1 Übersicht über die analysierten Szenarien sowie die Werte für die analysierten Parameter (Variations). Die Transportdistanz bezieht sich auf den Transport des Altholzes von der Anfallsstelle zur CaReWood-Anlage.


Scenario	Transportation distance	Moisture content	Yield	Glue consumption	Variations
Average- case	68 km	22%	26%	10,1 kg/m³	A1: u = 13% A2: u = 26% A3: Yield = 18% A4: Yield = 35% A5: Glue consumption = 8,1 kg/m³ A6: Glue consumption = 12,1 kg/m³
Best-case	29 km	13%	35%	$8,1 \text{ kg/m}^3$	
Worst- case	167 km	26%	18%	12,1 kg/m³	

6.2 Modellierung der Sachbilanz

6.2.1 Sachbilanz für das CaReWood-System

In Abbildung 2 sind die Systemgrenzen für das CaReWood-System dargestellt. Die Modellierung der Sachbilanz erfolgte auf Grundlage und mit Abstimmung der Projektpartner

aus dem Arbeitspaket 4. Im Folgenden werden die Dateninventare für die in der Abbildung dargestellten Prozesse beschrieben.

6.2.1.1 Transport

Das System beginnt mit dem Transport des Altholzes von der Anfallsstelle zur CaReWood-Anlage. Die Sachbilanzdaten für den Transport des Altholzes im CaReWood-System sind in Tabelle 2 zusammengestellt. Die Transportdistanzen für die average-case, best-case und worst-case Szenarien sind in Tabelle 3 dargestellt.

Die Distanzen stammen aus den Ergebnissen des Arbeitspakets 3 des CaReWood-Projekts. Die Variable m_w bezieht sich auf das Feuchtgewicht des transportierten Holzes. Das Feuchtgewicht von Holz (m_w) wurde mit Formel 1 berechnet, mit u als Holzfeuchte und der Trockenmasse m_d des transportierten Holzes.

Formel 1

$$m_w = (1+u) \times m_d$$

Tabelle 2 Sachbilanzdaten für den Transport des Altholzes im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Recovered wood	1.00	m^3			
Transport by road	m_w *transportation_distance	t.km	Own calculation	transport, freight, lorry, all sizes, EURO5 to generic market for transport, freight, lorry, unspecified	EI 3.3
Output					
Recovered wood	1.00	m^3			

Tabelle 3 Parameterwerte für den Transport von Altholz im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Transportation_distance	68	29	167	km	Work package 3

6.2.1.2 Sortierung

Auch wenn an der Anfallsstelle eine Vorsortierung erfolgt, wurde eine werkseigene manuelle Sortierung an der CaReWood-Anlage modelliert. In dieser Sortierung werden geschädigte, gebogene, oder irgendwie anderweitig nicht geeignete Altholzteile aussortiert und der Verbrennung zugeführt. Die Sachbilanzdaten für den Sortierprozess sind in Tabelle 4 zusammengefasst.

Der Stromverbrauch für den Sortierprozess wurde auf Basis eines Sortierprozesses von Abfällen aus Abriss und Renovierung von Doka (2009) aus der Ecoinvent Datenbank v. 3.3 berechnet. Der Prozess beschreibt die Sortierung von Abfällen aus Abriss und Renovierung in der Schweiz und umfasst mineralische Baustoffe, Straßenbelag, Holz und andere Materialien. Für die Sortierung von 1 t Abrissmaterial wird ein durchschnittlicher Stromverbrauch von 7,9 MJ angegeben (Doka 2009). Bei einer Trockenmasse von Altholz mit 387,2 kg/m³

errechnet sich für die Sortierung von Altholz aus dem Abriss ein Stromverbrauch von ungefähr 3 MJ pro m³.

Die Ausbeute des Sortierprozesses basiert auf den Ergebnissen aus Arbeitspaket 4. Dazu wurden Althölzer von verschiedenen Altholzaufbereitern in Frankreich gesammelt und nach vorgegebenen Kriterien für den CaReWood-Prozess sortiert. Um die Variabilität der Altholzqualitäten abzubilden wurden ein best-case und ein worst-case Szenario berechnet (Tabelle 5). Die Berechnungen basieren auf einer Unsicherheit von ±20% für die Menge des aussortierten Altholzes.

Tabelle 4 Sachbilanzdaten für die Sortierung von Altholz an der CaReWood-Anlage. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Quantity Unit Reference for quantity		LCI	Reference (LCI)
Input					
Recovered wood	1.00	m^3			
Electricity	3	MJ	Own calculation based on data from (Doka 2009)	market for electricity, medium voltage	EI 3.3
Output					
Recovered wood	1.00*sorting_site_yield	m ³	Own calculation		
Waste wood	1.00*(1-sorting_site_yield)	m^3	Own calculation		

Tabelle 5 Parameterwerte für die Sortierung von Altholz an der CaReWood-Anlage.

	Average-case	Best-case	Worst-case	Unit	Reference
Sorting_site_yield	89	91	86	%	Own experiments and calculation in work package 4

6.2.1.3 Kappsäge

Nach der Sortierung durchläuft das Altholz verschiedene Detektoren zum Nachweis von Metallen, Kunststoffen oder anderen Störstoffen, die anschließend mit einer Kappsäge ausgekappt werden. Die ausgekappten Abschnitte werden in der KWK-Anlage verbrannt. Die Sachbilanzdaten für die Kappsäge sind in Tabelle 6 dargestellt.

Die Sachbilanzdaten für den Sägeprozess wurden mit dem Ziel modelliert, dass ein direkter Vergleich mit den Sägeprozessen aus dem Gutschriftsystem möglich ist. Daher basieren die Prozesse in beiden Systemen auf den gleichen Ausgangsdaten. Für das CaReWood-System wurden die Daten nach Vorgaben aus Arbeitspaket 4 angepasst, um die notwendigen

Verarbeitungsschritte abzubilden. Die Anpassungen der Daten werden nachfolgend im Detail beschrieben. Dieser Modellierungsansatz wurde gewählt, um die gleiche Datenqualität und – tiefe für das CaReWood- und das Gutschriftsystem zu garantierten. Dadurch werden die Bilanzierungsergebnisse ausschließlich von den Anpassungen, d. h. den Unterschieden zwischen dem CaReWood-System und dem Gutschriftsystem determiniert und nicht durch eine unterschiedliche Datenqualität, wie es bei unterschiedlichen Datengrundlagen der Fall wäre.

Die Sachbilanzdaten für die Kappsäge basieren auf dem Datensatz zum Sägen von Nadelholz (Werner 2014b) aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016). Der Prozess repräsentiert die Produktion von Nadelschnittholz aus Nadelrundholz. Zunächst wurden die Daten auf einen Input von 1 m³ Holz umgerechnet. Ausgehend von den Empfehlungen aus dem Arbeitspaket 4 wurden die sonstigen Inputflüsse für den CaReWood-Prozess um 50% reduziert.

Für den Stromverbrauch wurde ein ähnlicher Ansatz gewählt. Allerdings umfasst der Datensatz die Entrindung von Rundholz, die im CaReWood-Prozess nicht notwendig ist. Aus diesem Grund wurde der Stromverbrauch für die Entrindung von Nadelrundholz aus der Datensatzdokumentation des Prozesses bark chip production, softwood, at sawmill (Werner 2015) der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) von dem Stromverbrauch aus dem Sägeprozess subtrahiert. Für die Kappsäge im CaReWood-System wurde der verbliebene Stromverbrauch anschließend um 25% reduziert.

Die Ausbeute der Kappsäge für den CaReWood-Prozess wurde anhand von Altholzproben ermittelt. Die Proben wurden gewogen und anschließend die Verunreinigungen ausgekappt. Die verbliebenden Abschnitte wurden erneut gewogen. Aus der Differenz beider Wägungen errechnet sich die Ausbeute. Um die Variabilität der Altholzqualitäten abzubilden wurden ein best-case und ein worst-case Szenario berechnet (Tabelle 7). Die Berechnungen basieren auf einer Unsicherheit von ±20% für die Menge der ausgekappten Abschnitte.

Tabelle 6 Sachbilanzdaten für die Kappsäge zum Auskappen von Störstoffen im CaReWood-System. EI 3.3 = Ecoinvent Datenbank (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Recovered wood	1.00	m^3			
Diesel (in building machine)	8.96	MJ	Own calculation	market for diesel, burned in building machine (GLO)	EI 3.3
Electricity	6.54	MJ	Own calculation	market for electricity, medium voltage (DE; FR)	EI 3.3
Lubricants	0.03	kg	Own calculation	market for lubricating oil (GLO)	EI 3.3
Sawmill	6.68E-8	Item	Own calculation	market for sawmill (GLO)	EI 3.3
Output					
Recovered wood	1.00*cross_cut_saw_yield	m^3	Own calculation		
Waste wood	1.00*(1-cross_cut_saw_yield)	m^3	Own calculation		

Tabelle 7 Parameterwerte für die Kappsäge zum Auskappen von Störstoffen im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Cross_cut_saw_yield	75	80	70	%	Own experiments and calculation in work
					package 4

6.2.1.4 Dekontaminierung und Einschnitt der Lamellen

Damit das Altholz stofflich verwertet werden kann, müssen chemische Verunreinigungen von der Holzoberfläche (Holzschutzmittel, Beschichtungen) entfernt werden. Im gleichen Zuge werden die Altholzstücke mit unterschiedlichen Querschnittsdimensionen in Lamellen standardisierter Querschnittsgrößen gesägt. Für die Dekontaminierung und den Einschnitt wurde eine Besäumungs-/Längsschnittkreissäge modelliert. Die Abschnitte mit den verunreinigten Oberflächen sowie das Sägemehl werden aussortiert und verbrannt. Die übrigen Lamellen werden mit Detektierverfahren auf verbliebende Verunreinigungen überprüft. Lamellen mit Verunreinigungen oberhalb der erlaubten Höchstgrenzen werden aussortiert und verbrannt.

Die Sachbilanzdaten für die Dekontaminierung und den Einschnitt sind in Tabelle 8 dargestellt. Der Ansatz zur Berechnung der Sachbilanzdaten ist identisch zu dem Ansatz wie er in Abschnitt 6.2.1.3 für die Sachbilanzdaten der Kappsäge beschrieben wurde. Für die Dekontaminierung wurde jedoch angenommen, dass der Stromverbrauch für die

Dekontaminierung und den Einschnitt etwa 50% des Stromverbrauchs aus dem Datensatz zum Einschnitt von Nadelholz (Werner 2014b) entspricht.

Zur Abschätzung der optimalen Lamellengrößen und zur Berechnung der assoziierten Ausbeute der Dekontaminierung wurde in Arbeitspaket 4 ein Modell des CaReWood-Prozesses auf Basis von Altholzproben erstellt und die Rechenergebnisse experimentell validiert. Um die Variabilität der Altholzqualitäten abzubilden wurden ein best-case und ein worst-case Szenario berechnet (Tabelle 9). Die Berechnungen basieren auf einer Unsicherheit von ±20% für die Menge der aussortierten Lamellen.

Tabelle 8 Sachbilanzdaten für die Dekontaminierung und Einschnitt des Altholzes im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity		Reference for quantity	LCI	Reference (LCI)
Input					
Recovered wood	1.00	m ³			
Diesel (in building machine)	8.96	MJ	Own calculation	market for diesel, burned in building machine (GLO) market for	EI 3.3
Electricity	13.09	MJ	Own calculation	electricity, medium voltage (DE; FR) market for	EI 3.3
Lubricants	0.03	kg	Own calculation	lubricating oil (GLO)	EI 3.3
Sawmill	6.68E-8	Item	Own calculation	market for sawmill (GLO)	EI 3.3
Output					
Recovered wood	1.00* Decontamination_yield	m^3	Own calculation		
Waste wood	1.00*(1- Decontamination_yield)	m^3	Own calculation		

Tabelle 9 Parameterwerte für die Dekontaminierung und den Einschnitt des Altholzes im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Decontamination_yield	56	65	47	%	Own experiments and calculation

6.2.1.5 Trocknung

Für die Herstellung eines dimensionsstabilen Brettschichtholzproduktes muss eine einheitliche Holzfeuchte für die Lamellen gewährleistet sein. Die Holzfeuchte der Lamellen sollte zum Zeitpunkt der Verklebung in etwa der Holzfeuchte entsprechen, wie sie sich am späteren Anwendungsgebiet einstellt. Da das Altholz unterschiedliche Holzfeuchten aufweist wurde eine technische Trocknung des Holzes modelliert. Die Holzfeuchte des Altholzes

wurde an >300 Altholzproben in Arbeitspaket 4 ermittelt. Die Holzfeuchte dieser Proben streute von 13-26% mit einer mittleren Holzfeuchte von 22% (Tabelle 11). Die Endfeuchte des Holzes nach der Trocknung beträgt 13%. Die Sachbilanzdaten für die Trocknung des Holzes im CaReWood-System ist in Tabelle 10 dargestellt.

Die Berechnung der Sachbilanzdaten für den Trocknungsprozess basiert auf eigenen Messungen und wurden mit Daten aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) ergänzt. Die eigene Berechnung der Sachbilanzdaten wurde aus zwei Gründen durchgeführt: Einerseits ermöglicht dies die Parametrisierung der Holzfeuchte, sodass der Einfluss der Holzfeuchte auf die Gesamtumweltwirkungen analysiert werden kann. Dies hat den Hintergrund, dass Altholz zurzeit nicht vor Feuchtigkeit geschützt gelagert oder transportiert wird und demzufolge die Holzfeuchte über die Logistikkette mit hoher Wahrscheinlichkeit wieder zunimmt. Da jedoch die Trocknung von Holz mit hohem Energieeinsatz verbunden ist, könnte sich eine feuchtigkeitsgeschützte Altholzlogistik lohnen. Ferner beziehen sich alle Datenbankprozesse zur Holztrocknung auf die Trocknung von Frischholz mit einer Holzfeuchte weit oberhalb der 22%, sodass sie für die Verwendung im CaReWood-System ungeeignet sind.

Der Wärmeverbrauch bei der technischen Trocknung von Holz basiert auf drei Anteilen: Der Energie für die Verdunstung des Wassers, der Energie zum Lösen der sorptiv an die Holzpolymere gebundenen Wassermoleküle im hygroskopischen Holzfeuchtebereich, und den allgemeinen Energieverlusten und dem Aufwärmen der Trocknungskammer.

Zur Berechnung des Wärmebedarfs wurde mit Formel 2 zunächst die zu verdunstende Menge Wasser ermittelt (m_w). Die Wassermenge (m_w) errechnet sich aus der Trockenmasse des Holzes m_0 (in kg) sowie der Holzfeuchte vor (u_i) und nach der Trocknung (u_e) (Trübswetter 2009).

Formel 2

$$m_w = m_0 * (u_i - u_e)$$

Der Wärmebedarf w zur Trocknung von Holz mit einer bestimmten Holzfeuchte wurde mit Formel 3 berechnet. Der Wärmebedarf entspricht dem Produkt aus der Menge des zu verdunstenden Wassers m_w und dem Energiebedarf q_d zur Verdunstung für 1 kg Wasser aus Nadelholz (Trübswetter 2009).

Formel 3

$$w = m_w * q_d$$

Der Energiebedarf zur Verdunstung von 1 kg Wasser kann aus Literaturquellen wie (Trübswetter 2009) entnommen werden. Die Werte enthalten den Energiebedarf für die Verdunstung des Wassers, dem Lösen der hygroskopischen Bindungen sowie der allgemeinen Verluste. Für die vorliegende Studie wurde ein durchschnittlicher Wert von $q_d = 1,25 \; kWh/kg$ verwendet.

Auf diesem Wege lässt sich ein Energiebedarf von 156,82 MJ für die Trocknung von Holz (Darrdichte: $387,2 \text{ kg/m}^3$) mit einer Holzfeuchte von $u_i = 22\%$ auf eine Endfeuchte von $u_e = 13\%$ berechnen.

Für den Stromverbrauch wurde ein lineares Verhältnis zum Wärmeverbrauch angenommen. Das Verhältnis zwischen Wärme und Strom wurde aus der Datensatzdokumentation zur Trocknung von Nadelholzlatten (Werner 2014a) aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) herangezogen.

Trocknungsemissionen, insbesondere von volatilen organischen Komponenten (VOCs) sowie Methanol, Formaldehyd und Acetaldehyd wurden aus (Wagner et al. 2009) ergänzt.

Tabelle 10 Sachbilanzdaten für die Trocknung von Altholz im CaReWood-System. Die Werte beziehen sich auf die Trocknung von 1 m³ Lamellen mit einer Ausgangsfeuchte von u = 22% auf eine Endfeuchte von u = 13%. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Recovered wood	1.00	m^3			
Electricity	31.36	MJ	Own calculation	market for electricity, medium voltage (DE; FR)	EI 3.3
Heat	156.82	MJ	Own calculation	market for heating mix (Own calculation)	EI 3.3
Technical drying facility	3.66E-6	Item	EI 3.3	market for technical wood drying facility (GLO)	EI 3.3
Output					
Recovered wood	1.00	m^3			
Formaldehyde (emission to air)	0.002	kg	(Wagner et al. 2009)		
VOCs (emission to air)	0.167	kg	(Wagner et al. 2009)		
Acetaldehyde (emission to air)	0.002	kg	(Wagner et al. 2009)		
Methanol (emission to air)	0.022	kg	(Wagner et al. 2009)		

Tabelle 11 Parameterwerte für die Holzfeuchte des Altholzes im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Moisture_content (u _i)	22	13	26	%	Work package 4

6.2.1.6 Kappsäge

Für ein hochwertiges Brettschichtholzprodukt müssen die Lamellen frei von Schwachstellen und Holzdefekten wie großen Ästen oder Bruchstellen sein. Die Defekte im Altholz kommen einerseits von der Holzqualität per se, andererseits sind sie durch die vorangegangene Nutzung oder durch den Rückbau und Transport verursacht. Das Auskappen der Defekte wird durch eine Kappsäge vorgenommen, wie sie bereits in Abschnitt 6.2.1.3 beschrieben wurde. Die ausgekappten Abschnitte werden verbrannt. Die Sachbilanzdaten für die Kappsäge zum Auskappen von Holzdefekten ist identisch zu der Kappsäge beschrieben in Abschnitt 6.2.1.3. Die in diesem Prozess angenommene Ausbeute ist in Tabelle 12 dargestellt.

Die Werte für die Ausbeute wurden durch die experimentelle Verarbeitung der Lamellen aus verschiedenen Altholzproben ermittelt. Dazu wurden die Lamellen gewogen, anschließend die

Defekte ausgekappt und die Lamellen erneut gewogen. Um die Variabilität der Altholzqualitäten abzubilden wurden ein best-case und ein worst-case Szenario berechnet (Tabelle 12). Die Berechnungen basieren auf einer Unsicherheit von ±20% für die Menge der ausgekappten Defekte.

Tabelle 12 Parameterwerte für die Kappsäge zum Auskappen von Holzdefekten im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Cross_cut_defects_yield	79	84	75	%	Own experiments and calculation in work package 4

6.2.1.7 Brettschichtholzfertigung

Der letzte Fertigungsschritt im CaReWood-Prozess ist die Herstellung des Brettschichtholzes. Die Lamellen werden keilverzinkt, gehobelt und anschließend zu BSH flächenverleimt.

Die Modellierung der Sachbilanzdaten für die BSH-Fertigung basiert auf den Daten für die Herstellung von Brettschichtholz für die Innenanwendung (Althaus 2010) aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016). Die Sachbilanzdaten für die Herstellung von BSH im CaReWood-System sind in Tabelle 13 dargestellt.

Ausgehend von den Daten in der Prozessdokumentation zur Herstellung von Brettschichtholz in Althaus (2010), wurde ein Anteil von 0,081 kg Klebstoffresten je kg Klebstoffinput angenommen.

Für die Ausbeute des BSH-Prozesses wurden Werte auf Basis von Experimentaldaten aus Arbeitspaket 4 verwendet (Tabelle 14). Das gleiche gilt für den Verbrauch von Klebstoff (Polyurethan-Harz), der während der Verarbeitung der Lamellen zu Brettschichtholz gemessen wurde (Tabelle 14). Um die Variabilität der Ausbeute und des Klebstoffverbrauchs abzubilden wurden ein best-case und ein worst-case Szenario berechnet (Tabelle 14). Die Berechnungen basieren auf einer Unsicherheit von ±20% für die Abfälle und den Klebstoffverbrauch in der BSH-Produktion.

Tabelle 13 Sachbilanzdaten für die Herstellung von Brettschichtholz aus Altholzlamellen im CaReWood-System. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Recovered wood	1/Glulam_yield	m^3	Own calculations		
Diesel (in building machine)	33.60	MJ	EI 3.3	market for diesel, burned in building machine (GLO)	EI 3.3
Electricity	464.40	MJ	EI 3.3	market for electricity, medium voltage (DE; FR)	EI 3.3
Heat	1072.00	MJ	EI 3.3	market for heating mix (Own calculation)	EI 3.3
Urea formaldehyde resin	Glue_consumption	kg	Own calculation	urea formaldehyde resin production (RER)	EI 3.3
Wooden board factory	3.33E-8	Item	EI 3.3	market for wooden board factory, organic bonded (GLO)	EI 3.3
Output					
Glulam	1.00	m^3	Own calculations		
Waste wood	1.00*(1/Glulam_yield-1)	m^3	Own calculations		
Waste polyurethane	Glue_consumption*0.081	kg	Own calculation	treatment of waste polyurethane, municipal incineration with fly ash extraction (CH)	EI 3.3
Formaldehyde (emission to air)	0.0115	kg	EI 3.3		

Tabelle 14 Parameterwerte für die bei der Brettschichtholzfertigung aus Altholzlamellen verwendete Klebstoffmenge im CaReWood-System.

	Average-case	Best-case	Worst-case	Unit	Reference
Glue_consumption	10.1	8.1	12.1	kg	Own calculation in work package 4
Glulam_yield	87	89	84	%	Own calculation in work package 4

6.2.1.8 Transport – Distribution des Brettschichtholzes

Es wird davon ausgegangen, dass es weniger CaReWood-Anlagen geben wird als BSH-Hersteller aus Frischholz. Aus diesem Grund wurde angenommen, dass die Transportdistanz zur Distribution des BSH aus Altholz höher ist als für BSH aus Frischholz, weshalb ein weiterer Transportprozess modelliert wurde. Für den Transport des BSH aus Altholz wurde eine Distanz von 150 km angenommen. Die Sachbilanzmodellierung erfolgt nach dem gleichen Prinzip wie bereits in Abschnitt 6.2.1.1 und Tabelle 2 beschrieben.

6.2.1.9 Verbrennung der Altholzreste im CaReWood-System

Für das CaReWood-System wurde angenommen, dass alle aussortierten Altholzstücke, Sägemehl, Hobelspäne und Abschnitte in einer werkseigenen KWK-Anlage verbrannt werden. Diese Annahme wurde getroffen, weil davon auszugehen ist, dass der größte Teil des Materials mit Holzschutzmitteln oder anderen Verunreinigungen oder Störstoffen versehen ist, die aus dem weiteren Stoffkreislauf entfernt werden sollten. Es wurde eine KWK-Anlage modelliert, da dies der derzeit modernsten Verbrennungstechnologie entspricht. Das verbrannte Material wird aufgrund der Verunreinigungen der Altholzkategorie AIV zugeordnet. Aus diesem Grund wurden für die Modellierung der Sachbilanz Inventardaten für die Verbrennung von Holz der Kategorie AIV benötigt. Insbesondere im Vergleich mit der Verbrennung des Altholzes im Referenzsystem, wo die Verunreinigungen deutlich weniger konzentriert auftreten, wurden Inventardaten für die Verbrennung einzelner Altholzkategorien benötigt.

Die Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AIV wurden von Speckels (2001) übernommen. Speckels (2001) stellt die Inventardaten für die Verbrennung von Altholz getrennt nach einzelnen Altholzkategorien dar. Allerdings beziehen sich die Ergebnisse auf das veraltete Klassifizierungssystem von Altholz, das inzwischen durch die neue Altholzverordnung ersetzt wurde. Eine Zuordnung der alten zu den aktuellen Kategorien ist jedoch gut möglich, insbesondere für die Kategorien AI und AIV. Die Inventardaten umfassen alle für die Verbrennung notwendigen Schritte wie z. B. das Hacken des Holzes. Die Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AIV ist in Tabelle 15 zusammengestellt.

Mit einer unterschiedlichen Holzfeuchte verändert sich die Energieausbeute eines Verbrennungsprozesses. Da die Auswirkungen unterschiedlicher Holzfeuchten des Altholzes auf die Gesamtumweltwirkungen des CaReWood-System analysiert werden sollten, wurde der Energieoutput des Prozesses entsprechend angepasst und parametrisiert. Grundsätzlich würde sich das Emissionsprofil mit ändernder Holzfeuchte ebenfalls verändern. Allerdings lagen keine Informationen zum Emissionsprofil der Holzverbrennung in Abhängigkeit der Holzfeuchte vor, sodass hier keine Anpassungen vorgenommen werden konnten.

Zur Berechnung der Energieproduktion wurde zunächst der untere Heizwert für die Holzfeuchten aus Tabelle 11 berechnet. Der untere Heizwert Hu_w in Abhängigkeit der Holzfeuchte berechnet sich mit Formel 4 aus dem unteren Heizwert für darrtrockenes Holz

Hu_f und der Holzfeuchte u (in %). Für den unteren Heizwert von darrtrockenem Holz Hu_f wurde ein Standardwert von 4578 kcal/kg angenommen (Kollmann 1982).

Formel 4

$$Hu_{w}\left[\frac{kcal}{kg}\right] = \frac{Hu_{f}\left[\frac{kcal}{kg}\right] - 6 * u[\%]}{1 + \frac{u}{100}[\%]}$$

Ausgehend von dem unteren Heizwert Hu_w wurden anschließend die erzeugten Strom- und Wärmemengen berechnet. Die Effizienz der KWK-Anlage wurde mit 85% angenommen (Betz et al. 2002). Das Verhältnis von Strom zu Wärme wurde mit 0,4 (Gores et al. 2011) angenommen.

Tabelle 15 Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AIV mit einer Holzfeuchte von u=22% im CaReWood-System. EI 3.3= Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)	
Input						
Waste wood	833.00	kg	Own calculation			
Ammonia	4.23	kg	(Speckels 2001)	market for ammonia (RER)	EI 3.3	
Concrete block	13.40	kg	(Speckels 2001)	market for concrete block (GLO)	EI 3.3	
Diesel	0.847	kg	(Speckels 2001)	market for diesel (EwS)	EI 3.3	
Electricity	55.00	MJ	(Speckels 2001)	market for electricity, medium voltage (DE; FR)	EI 3.3	
Limestone	1.55	kg	(Speckels 2001)	market for limestone (CH)	EI 3.3	
Metal working	3.90E-2	kg	(Speckels 2001)	market for metal working (GLO)	EI 3.3	
Steel	3.90E-2	kg	(Speckels 2001)	market for steel (GLO)	EI 3.3	
Output						
Outputs to technosphere						
Electricity	3086.65	MJ	Own calculation			
Heat	7716.63	MJ	Own calculation			
Emissions to air						
Antimony	1.65E-06	kg	(Speckels 2001)			
Arsenic	6.17E-06	kg	(Speckels 2001)			
Lead	4.13E-05	kg	(Speckels 2001)			
Cadmium	1.39E-06	kg	(Speckels 2001)			
Chrome	3.69E-05	kg	(Speckels 2001)			
Cobalt	8.08E-06	kg	(Speckels 2001)			
Copper	1.67E-05	kg	(Speckels 2001)			
Nickel	1.49E-06	kg	(Speckels 2001)			
Mercury	2.48E-06	kg	(Speckels 2001)			
Thallium	8.14E-07	kg	(Speckels 2001)			
Vanadium	4.24E-06	kg	(Speckels 2001)			
Zinc	6.38E-07	kg	(Speckels 2001)			
Tin	1.05E-05	kg	(Speckels 2001)			
Ammonia	1.39E-03	kg	(Speckels 2001)			
Hydrogen chloride	2.50E-03	kg	(Speckels 2001)			
Hydrogen fluoride	3.62E-04	kg	(Speckels 2001)			
Carbon dioxide	1.24E+01	kg	(Speckels 2001)			
Carbon monoxide	9.41E-02	kg	(Speckels 2001)			
Nitrous oxide	2.24E-03	kg	(Speckels 2001)			
Sulphur dioxide	3.63E-02	kg	(Speckels 2001)			
Hydrogen sulfide	1.05E-03	kg	(Speckels 2001)			
Nitrogen oxides	5.62E-01	kg	(Speckels 2001)			

Acetaldehyde	8.25E-03	kg	(Speckels 2001)
Acetone	4.30E-07	kg	(Speckels 2001)
Alkane	8.80E-02	kg	(Speckels 2001)
Alkene	3.03E-02	kg	(Speckels 2001)
Benzo(a)pyrene	1.55E-08	kg	(Speckels 2001)
Benzene	8.80E-02	kg	(Speckels 2001)
Butane	1.48E-06	kg	(Speckels 2001)
Ethane	2.45E-03	kg	(Speckels 2001)
Ethanol	9.61E-07	kg	(Speckels 2001)
Ethylbenzene	5.50E-03	kg	(Speckels 2001)
Formaldehyde	1.38E-02	kg	(Speckels 2001)
Methane	6.45E-02	kg	(Speckels 2001)
Methanol	8.66E-07	kg	(Speckels 2001)
Pentane	6.72E-06	kg	(Speckels 2001)
Polychlorinated dibenzo-p-	2.04E-11	kg	(Speckels 2001)
dioxins Polycyclic aromatic	3.19E-08	kg	(Speckels 2001)
hydrocarbons (without		8	,
benzo(a)pyrene) Propane	1.12E-03	kg	(Speckels 2001)
Toluene	2.75E-02	kg	(Speckels 2001)
Remaining volatile organic	2.20E-03	kg	(Speckels 2001)
_		U	•
compounds	1.650.00		(9 1 1 2001)
Xylene	1.65E-02	kg	(Speckels 2001)
Xylene Emissions to water			
Xylene Emissions to water Arsenic	3.07E-08	kg	(Speckels 2001)
Xylene Emissions to water Arsenic Lead	3.07E-08 4.34E-07	kg kg	(Speckels 2001) (Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium	3.07E-08 4.34E-07 4.84E-09	kg kg kg	(Speckels 2001) (Speckels 2001) (Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome	3.07E-08 4.34E-07 4.84E-09 2.11E-07	kg kg kg kg	(Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome Copper	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08	kg kg kg kg kg	(Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07	kg kg kg kg kg	(Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001) (Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09	kg kg kg kg kg	(Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07	kg kg kg kg kg kg kg	(Speckels 2001)
Xylene Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07	kg kg kg kg kg kg kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11	kg kg kg kg kg kg kg kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate Phosphate	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05 3.38E-06	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate Phosphate Benzene	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05 3.38E-06 3.31E-07	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate Phosphate Benzene Hydrocarbons	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05 3.38E-06 3.31E-07 5,47E-06	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate Phosphate Benzene Hydrocarbons Methanol	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05 3.38E-06 3.31E-07 5,47E-06 6.35E-03	kg	(Speckels 2001)
Emissions to water Arsenic Lead Cadmium Chrome Copper Nickel Mercury Vanadium Zinc Tin Ammonia Nitrate Phosphate Benzene Hydrocarbons	3.07E-08 4.34E-07 4.84E-09 2.11E-07 3.10E-08 1.83E-07 1.59E-09 1.36E-07 2.38E-07 1,50E-11 6.78E-03 1.97E-05 3.38E-06 3.31E-07 5,47E-06	kg	(Speckels 2001)

hydrocarbons

Toluene	1.12E-06	kg	(Speckels 2001)
Chemical oxygen demand	7.20E-03	kg	(Speckels 2001)

6.2.2 Sachbilanz für das Referenzsystem Verbrennung

In Abbildung 3 sind die Systemgrenzen für das Referenzsystem, der Verbrennung des Altholzes, dargestellt. Im Folgenden werden die Dateninventare für die in der Abbildung dargestellten Prozesse beschrieben.

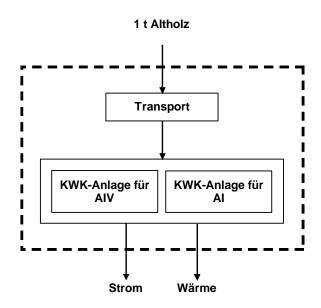


Abbildung 3 Systemgrenze (gestrichelte Linie) des Referenzsystems, der Verbrennung von Altholz in einer KWK-Anlage. KWK = Kraft-Wärme-Kopplung. AI und AIV beziehen sich auf die Altholzkategorien nach der Altholzverordnung (AltholzV 2012).

6.2.2.1 Transport zur Verbrennungsanlage

Das Referenzsystem schließt den Transport des Altholzes von der Anfallsstelle zur Verbrennungsanlage ein. Für den Altholztransport wurde eine Distanz von 75 km angenommen (Höglmeier et al. 2014).

Die Modellierung der Sachbilanz folgt den gleichen Annahmen wie sie bereits für den Transport des Altholzes im CaReWood-System, in Abschnitt 6.2.1.1 und Tabelle 2, beschrieben wurden.

6.2.2.2 Verbrennung des Altholzes in einer KWK-Anlage im Referenzsystem

Wie in Abbildung 3 ersichtlich, wurde die Verbrennung des Altholzes im Referenzsystem als Kombination aus zwei Verbrennungsprozessen modelliert. Ein Prozess repräsentiert dabei die Verbrennung von Altholz der Kategorien AI bzw. AIV. Dieser Ansatz wurde gewählt, um verzerrte Ergebnisse im Vergleich zum CaReWood-System zu vermeiden. Auch wenn in beiden Systemen faktisch Holz der gleichen Kategorie verbrannt wird, erfolgt im CaReWood-System die Verbrennung einer viel höheren Konzentration an Verunreinigungen. Anders ausgedrückt: Die Menge an verbrannten Verunreinigungen ist in beiden Systemen identisch; im CaReWood-System ist das Verhältnis zwischen Holz und Verunreinigungen jedoch niedriger als im Referenzsystem. Da für die Verbrennung des hochkonzentrierten Abfalls im CaReWood-System keine Emissionsdaten vorliegen, wurde der beschriebene Ansatz gewählt. Auf diese Weise wird der Unterschied zwischen beiden Systemen berücksichtigt. Während im CaReWood-System nur der kontaminierte Holzanteil verbrannt wird, wird im Referenzsystem zusätzlich das Holz verbrannt, das im CaReWood-System im Produkt verwertet wurde. Da sich die Inventardaten auf die Inputmenge beziehen, würde das Emissionsprofil des Referenzsystems unverhältnismäßig höher ausfallen als im CaReWood-System, wenn ausschließlich die Inventardaten für AIV Holz verwendet würden. Dies würde im Vergleich beider Systeme die Tatsache unberücksichtigt lassen, dass die Konzentration an Verunreinigungen im Referenzsystem niedriger ist als im CaReWood-System.

Für die Trennung des Altholzes im Referenzsystem zwischen AI und AIV Holz wurde die Ausbeute des CaReWood-Systems verwendet. Der gleiche Anteil an Altholz der im CaReWood-System verbrannt wird, wird im Referenzsystem als AIV Holz berücksichtigt. Der Anteil des Altholzes, der im CaReWood-System im Produkt verwertet wurde und somit unbehandeltes Holz darstellt, wird im Referenzsystem als AI Holz berücksichtigt.

Der gewählte Ansatz führt zu den gleichen Umweltwirkungen für die Verbrennung der kontaminierten Holzbestandteile in beiden Systemen. Die Unterschiede in den Umweltwirkungen zwischen den Systemen gehen daher ausschließlich auf die Verbrennung des Holzanteils zurück, der im CaReWood-Produkt verarbeitet wurde.

Die Sachbilanzdaten für die Verbrennung von Altholz AIV wurden bereits in Abschnitt 6.2.1.9 und in Tabelle 15 beschrieben. Die Sachbilanzdaten für die Verbrennung von Altholz AI sind in Tabelle 16 zusammengefasst. Die Berechnungen der Sachbilanzdaten für das AI Holz folgen dem gleichen Ansatz wie in Abschnitt 6.2.1.9 beschrieben.

Tabelle 16 Sachbilanzdaten für die Verbrennung von Altholz der Kategorie AI mit einer Holzfeuchte von u = 22% im Referenzsystem. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)	
Input						
Waste wood	833.00	kg	Own calculation			
Concrete block	7.03E-1	kg	(Speckels 2001)	market for concrete block (GLO)	EI 3.3	
Diesel	36	MJ	(Speckels 2001)	market for diesel (EwS)	EI 3.3	
Electricity	55.00	MJ	(Speckels 2001)	market for electricity, medium voltage (DE; FR)	EI 3.3	
Metal working	3.90E-2	kg	(Speckels 2001)	market for metal working (GLO)	EI 3.3	
Steel	3.90E-2	kg	(Speckels 2001)	market for steel (GLO)	EI 3.3	
Output						
Outputs to technosphere						
Electricity	3086.65	MJ	Own calculation			
Heat	7716.63	MJ	Own calculation			
Emissions to air						
Antimony	4.72E-08	kg	(Speckels 2001)			
Arsenic	3.87E-05	kg	(Speckels 2001)			
Lead	1.13E-05	kg	(Speckels 2001)			
Cadmium	6.55E-08	kg	(Speckels 2001)			
Chrome	2.72E-04	kg	(Speckels 2001)			
Cobalt	3.55E-08	kg	(Speckels 2001)			
Copper	3.52E-04	kg	(Speckels 2001)			
Nickel	3.86E-07	kg	(Speckels 2001)			
Mercury	2.75E-07	kg	(Speckels 2001)			
Thallium	1.72E-09	kg	(Speckels 2001)			
Vanadium	8.71E-05	kg	(Speckels 2001)			
Zinc	2.74E-06	kg	(Speckels 2001)			
Tin	1.50E-07	kg	(Speckels 2001)			
Ammonia	1.42E-01	kg	(Speckels 2001)			
Hydrogen chloride	1.22E-02	kg	(Speckels 2001)			
Hydrogen fluoride	5.22E.04	kg	(Speckels 2001)			
Carbon dioxide	1.09E+01	kg	(Speckels 2001)			
Carbon monoxide	1.43E+00	kg	(Speckels 2001)			
Nitrous oxide	2.47E-02	kg	(Speckels 2001)			
Sulphur dioxide	6.74E-02	kg	(Speckels 2001)			
Hydrogen sulfide	7.62E-05	kg	(Speckels 2001)			
Nitrogen oxides	2.15E+00	kg	(Speckels 2001)			
Acetaldehyde	2.32E-07	kg	(Speckels 2001)			
Acetone	2.32E-07	kg	(Speckels 2001)			

Alkene	Alkane	1.75E-05	kg	(Speckels 2001)
Benzene 1.93E-06 kg (Speckels 2001) Butane 2.13E-06 kg (Speckels 2001) Ethane 2.18E-04 kg (Speckels 2001) Ethylhenzene 1.67E-05 kg (Speckels 2001) Ethylhenzene 1.67E-05 kg (Speckels 2001) Ethylhenzene 1.67E-05 kg (Speckels 2001) Formaldehyde 2.08E-04 kg (Speckels 2001) Methano 1.47E-01 kg (Speckels 2001) Methano 1.47E-01 kg (Speckels 2001) Methano 1.514E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polycyclic aromatic hydrocarbons (without benzo(a)pyrene) Propune 1.11E-04 kg (Speckels 2001) Propune 1.11E-04 kg (Speckels 2001) Toluene 7.66E-06 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Mickel 3.73E-07 kg (Speckels 2001) Microury 5.42E-09 kg (Speckels 2001) Mirrate 1.03E-04 kg (Speckels 2001) Nirrate 1.03E-04 kg (Speckels 2001) Nirrat	Alkene	1.67E-05	kg	(Speckels 2001)
Buttane 2.18E-06 kg (Speckels 2001) Ethanol 1.09E-06 kg (Speckels 2001) Ethylbenzene 1.67E-05 kg (Speckels 2001) Ethylbenzene 1.67E-05 kg (Speckels 2001) Methanol 1.47E-01 kg (Speckels 2001) Methanol 1.47E-01 kg (Speckels 2001) Methanol 5.14E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polychlorinated dibenzo-p-dioxins Polycyclic aromatic hydrocarbons (without benzo(a)pyrene) Propane 1.11E-04 kg (Speckels 2001) Propane 1.11E-04 kg (Speckels 2001) Remaining volatile organic compounds Xylene 5.76E-04 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Mirate 1.03E-04 kg (Speckels 2001)	Benzo(a)pyrene	2.04E-06	kg	(Speckels 2001)
Ethane	Benzene	1.93E-06	kg	(Speckels 2001)
Ethanol 1.05E-06 kg (Speckels 2001) Ethylbenzene 1.67E-05 kg (Speckels 2001) Formaldehyde 2.08E-04 kg (Speckels 2001) Methane 1.47E-01 kg (Speckels 2001) Methanol 5.14E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polycylorinated dibenzo-p-dioxins 7.06E-11 kg (Speckels 2001) Toluene 7.66E-06 kg (Speckels 2001) Remaining volatile organic 2.31E-01 kg (Speckels 2001) Remaining volatile organic 2.31E-01 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Phosphate 6.05E-06 kg (Speckels 2001) Phosphate 6.05E-06 kg (Speckels 2001) Phonol 5.79E-06 kg (Speckels 2001) Phonol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 5.09E-06 kg (Speckels 2001)	Butane	2.13E-06	kg	(Speckels 2001)
Ethylbenzene 1.67E-05 kg (Speckels 2001) Formaldehyde 2.08E-04 kg (Speckels 2001) Methane 1.47E-01 kg (Speckels 2001) Methanol 5.14E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polychlorinated dibenzo-p-dioxins 7.06E-11 kg (Speckels 2001) Polycyclic aromatic hydrocarbons (without benzo(a)pyrene) 4.31E-05 kg (Speckels 2001) Propane 1.11E-04 kg (Speckels 2001) Propane 1.11E-04 kg (Speckels 2001) Propane 7.66E-06 kg (Speckels 2001) Remaining volatile organic compounds Xylene 5.76E-04 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001)	Ethane	2.18E-04	kg	(Speckels 2001)
None	Ethanol	1.09E-06	kg	(Speckels 2001)
Methane 1.47E-01 kg (Speckels 2001) Methanol 5.14E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polycyloli aromatic hydrocarbons (without benzo(a)pyrene) 4.31E-05 kg (Speckels 2001) Propane 1.11E-04 kg (Speckels 2001) Toluene 7.66E-06 kg (Speckels 2001) Remaining volatile organic compounds 2.31E-01 kg (Speckels 2001) Xylene 5.76E-04 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Nitrate 1.03E-04<	Ethylbenzene	1.67E-05	kg	(Speckels 2001)
Methanol 5.14E-07 kg (Speckels 2001) Pentane 1.80E-05 kg (Speckels 2001) Polychlorinated dibenzo-p-dioxins (without benzo(a)pyrene) 7.06E-11 kg (Speckels 2001) Polycyclic aromatic hydrocarbons (without benzo(a)pyrene) 4.31E-05 kg (Speckels 2001) Toluene 7.66E-06 kg (Speckels 2001) Remaining volatile organic compounds 2.31E-01 kg (Speckels 2001) Kylene 5.76E-04 kg (Speckels 2001) Emissions to water 4.31E-07 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Vanadium 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04	Formaldehyde	2.08E-04	kg	(Speckels 2001)
Pentane	Methane	1.47E-01	kg	(Speckels 2001)
Polychlorinated dibenzo-p-dioxins Polycyclic aromatic hydrocarbons (without benzo(a)pyrene) A:31E-05 kg (Speckels 2001)	Methanol	5.14E-07	kg	(Speckels 2001)
Asyllon	Pentane	1.80E-05	kg	(Speckels 2001)
(without benzo(a)pyrene) 4.31E-03 kg Propane 1.11E-04 kg (Speckels 2001) Toluene 7.66E-06 kg (Speckels 2001) Remaining volatile organic compounds 2.31E-01 kg (Speckels 2001) Xylene 5,76E-04 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001)	Polychlorinated dibenzo-p-dioxins	7.06E-11	kg	(Speckels 2001)
Propane		4.31E-05	kg	(Speckels 2001)
Remaining volatile organic compounds 2.31E-01 kg (Speckels 2001) Xylene 5.76E-04 kg (Speckels 2001) Emissions to water 4.31E-07 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Methanol	· · · · · · · · · · · · · · · · · · ·	1.11E-04	kg	(Speckels 2001)
Compounds Xylene 5,76E-04 kg (Speckels 2001)	Toluene	7.66E-06	kg	(Speckels 2001)
Xylene 5,76E-04 kg (Speckels 2001) Emissions to water Arsenic 1.31E-07 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) <tr< td=""><td></td><td>2.31E-01</td><td></td><td>(Speckels 2001)</td></tr<>		2.31E-01		(Speckels 2001)
Arsenic 1.31E-07 kg				(Speckels 2001)
Arsenic 1.31E-07 kg (Speckels 2001) Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 <td></td> <td></td> <td></td> <td></td>				
Lead 2.55E-06 kg (Speckels 2001) Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 </td <td></td> <td>1.31E-07</td> <td>kg</td> <td>(Speckels 2001)</td>		1.31E-07	kg	(Speckels 2001)
Cadmium 3.23E-08 kg (Speckels 2001) Chrome 4.55E-07 kg (Speckels 2001) Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Lead			(Speckels 2001)
Copper 1.55E-07 kg (Speckels 2001) Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Cadmium	3.23E-08	kg	(Speckels 2001)
Nickel 3.73E-07 kg (Speckels 2001) Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Chrome	4.55E-07	kg	(Speckels 2001)
Mercury 5.42E-09 kg (Speckels 2001) Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Copper	1.55E-07	kg	(Speckels 2001)
Vanadium 8.53E-07 kg (Speckels 2001) Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Nickel	3.73E-07	kg	(Speckels 2001)
Zinc 5.74E-07 kg (Speckels 2001) Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Mercury	5.42E-09	kg	(Speckels 2001)
Tin 9.29E-11 kg (Speckels 2001) Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Vanadium	8.53E-07	kg	(Speckels 2001)
Ammonia 4.25E-05 kg (Speckels 2001) Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Zinc	5.74E-07	kg	(Speckels 2001)
Nitrate 1.03E-04 kg (Speckels 2001) Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Tin	9.29E-11	kg	(Speckels 2001)
Phosphate 6.81E-06 kg (Speckels 2001) Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Ammonia	4.25E-05	kg	(Speckels 2001)
Benzene 6.05E-06 kg (Speckels 2001) Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Nitrate	1.03E-04	kg	(Speckels 2001)
Hydrocarbons 7.21E-06 kg (Speckels 2001) Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Phosphate	6.81E-06	kg	(Speckels 2001)
Methanol 6.16E-08 kg (Speckels 2001) Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Benzene	6.05E-06	kg	(Speckels 2001)
Phenol 5.79E-06 kg (Speckels 2001) Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Hydrocarbons	7.21E-06	kg	(Speckels 2001)
Polycyclic aromatic hydrocarbons 4.82E-06 kg (Speckels 2001) Toluene 5.09E-06 kg (Speckels 2001)	Methanol	6.16E-08	kg	(Speckels 2001)
Toluene 5.09E-06 kg (Speckels 2001)	Phenol	5.79E-06	kg	(Speckels 2001)
(C. 1.1.2001)	Polycyclic aromatic hydrocarbons	4.82E-06	kg	(Speckels 2001)
Chemical oxygen demand 3.97E-02 kg (Speckels 2001)	Toluene	5.09E-06	kg	(Speckels 2001)

6.2.3 Sachbilanzen für die Gutschriftsysteme

6.2.3.1 Sachbilanz für die Produktion von Brettschichtholz aus Frischholz

Die Produktion von Brettschichtholz aus Frischholz als Gutschriftsystem für die Herstellung von Brettschichtholz im CaReWood-System ist an die Modellierung der Sachbilanz für das CaReWood-System angelehnt. Die gleichwertige Modellierung beider Systeme sollte den Einfluss einer unterschiedlichen Datenqualität auf die Ergebnisse reduzieren, wie er bei der Verwendung eines Datenbanksprozesses auftreten würde. Aus diesem Grund wurden die Prozesse im Gutschriftsystem spezifisch modelliert. Die Systemgrenzen für das Gutschriftsystem zur Produktion von BSH aus Frischholz sind in Abbildung 4 dargestellt.

Das System beginnt mit der Produktion von Nadelrundholz in einem forstwirtschaftlichen Prozess. Das Rundholz wird anschließend zu einem Sägewerk transportiert, wo es zu Schnittholz verarbeitet wird. Beim Sägewerk erfolgt zudem die Trocknung des Holzes bevor es anschließend zum Brettschichtholzhersteller transportiert wird. Es wird davon ausgegangen, dass die Trocknungsenergie von einer KWK-Anlage des Sägewerks bereitgestellt wird, die über Sägenebenprodukte befeuert wird. Überschüssige Energie aus der KWK-Anlage wird in das Versorgungsnetz eingespeist. Die Nebenprodukte aus der Brettschichtholzherstellung werden im werkseigenen Boiler verbrannt. Überschüssige Wärme wird ebenfalls in das Versorgungsnetz eingespeist. Anschließend wird das BSH zu den Abnehmern transportiert.

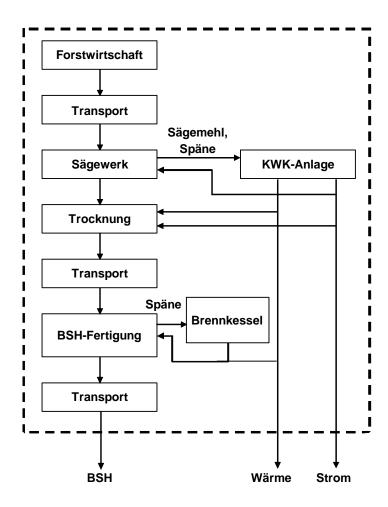


Abbildung 4 Systemgrenze (gestrichelte Linie) für das Gutschriftsystem zur Herstellung von Brettschichtholz aus Frischholz. BSH = Brettschichtholz, KWK = Kraft-Wärme-Kopplung.

6.2.3.1.1 Forstwirtschaft

Die Sachbilanzdaten zur Produktion von Rundholz in Deutschland wurden durch den Datenbankprozess zur Produktion von Fichten-Rundholz aus nachhaltiger Forstwirtschaft aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) modelliert.

6.2.3.1.2 Transport - Rundholz

Im Gutschriftsystem zur Produktion von BSH aus Frischholz wurden drei Transportprozesse modelliert. Der Transport von Rundholz, von Schnittholz sowie dem Brettschichtholz. Die Sachbilanzdaten für den Transport des Brettschichtholzes wurde wie in Abschnitt 6.2.1.1 und Tabelle 2 beschrieben, modelliert. Die Transportdistanzen sind in kann Tabelle 18 zusammengefasst.

Die Sachbilanz für den Transport von Rundholz und Schnittholz ist in Tabelle 17 dargestellt. Die Berechnung der transportieren Mengen erfolgt analog zu den Beschreibungen in Abschnitt 6.2.1.1. Die Transportdistanzen sind in Tabelle 18 zusammengestellt.

Tabelle 17 Sachbilanz für die Transportprozesse im Gutschriftsystem zur Produktion von Brettschichtholz aus Frischholz. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Sawn timber/Ro und wood	1.00	m ³			
Transport by road	$m_w * transportation_distance * share_truck$	t.km		transport, freight, lorry, all sizes, EURO5 to generic market for transport, freight, lorry, unspecified	EI 3.3
Transport by train	m_w^* transportation_distance*share_train	t.km		market for transport, freight train (EwS)	EI 3.3
Transport by ship	$m_w^* transportation_distance^* share_ship$	t.km		transport, freight, inland waterways (RER)	EI 3.3
Output					
Sawn timber/Ro und wood	1.00	m ³			

Tabelle 18 Parameterwerte für die Transportdistanzen und den Anteil verschiedener Transportverfahren für die verschiedenen Transportprozesse im Gutschriftsystem zur Produktion von Brettschichtholz aus Frischholz.

Transportation process	Transportation system	Amount	Unit	Reference
Forest to sawmill	Transportation_distance	111	km	(Rüter and Diederichs 2012)
	Share_truck	70	%	(Rüter and Diederichs 2012)
	Share_train	28.3	%	(Rüter and Diederichs 2012)
	Share_ship	1.7	%	(Rüter and Diederichs 2012)
Sawmill to glulam manufacturer	Transportation_distance	827	km	(Rüter and Diederichs 2012)
	Share_truck	70	%	(Rüter and Diederichs 2012)
	Share_train	28.3	%	(Rüter and Diederichs 2012)
	Share_ship	1.7	%	(Rüter and Diederichs 2012)
Distribution of glulam	Transportation_distance	100	km	Own assumption

6.2.3.1.3 Sägewerk

Im Sägewerk wird das Rundholz entrindet und zu Schnittholz verarbeitet. Für einen transparenten Vergleich mit dem CaReWood-System entspricht der Ansatz zur Modellierung der Sachbilanz des Sägewerks dem Ansatz zur Modellierung der Sägeprozesse im CaReWood-System.

Die Sachbilanz basiert auf dem Datenbankprozess zur Herstellung von Nadelschnittholz aus Rundholz (Werner 2014b) aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016). Zur Korrektur der Massen- und Kohlenstoffbilanz zwischen den Inputs des Forstprozesses und dem Output des Sägewerksprozesses, wurde die im Sägewerk erzeugte Menge an Rinde hinzugefügt. Dazu wurde ein Rindenanteil von 10% pro m³ Fichtenrundholz angenommen. Die Sachbilanzdaten für die Produktion von Schnittholz im Gutschriftsystem sind in Tabelle 19 dargestellt.

Tabelle 19 Sachbilanzdaten für die Produktion von Schnittholz im Gutschriftsystem für die Produktion von Brettschichtholz aus Frischholz. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Flow	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Sawlog (under bark)	1.64	m ³	EI 3.3	see section 6.2.3.1.1 on forestry process	}
Diesel (in building machine)	29.4	MJ	EI 3.3	market for diesel, burned in building machine (GLO)	EI 3.3
Electricity	70.92	MJ	EI 3.3	market for electricity, medium voltage (DE; FR)	EI 3.3
Lubricants	0.107	kg	EI 3.3	market for lubricating oil (GLO)	EI 3.3
Sawmill	2.19E-7	Item	EI 3.3	market for sawmill (GLO)	EI 3.3
Output					
Sawn timber	1	m^3	EI 3.3		
Bark	0.164	m^3	Own calculation		
Sawdust	0.2	m^3	Own calculation based on EI 3.3		
Slabs and sidings	0.44	m^3	Own calculation based on EI 3.3		
Waste mineral oil	0.016	kg	EI 3.3	market for waste mineral oil (EwS)	EI 3.3

6.2.3.1.4 Verbrennung von Sägenebenprodukten in einer KWK-Anlage

Zur Vereinfachung der Systeme wurde die vollständige Verbrennung der Sägenebenprodukte angenommen. Dies entspricht nur in Teilen der realen Verwertung von Sägenebenprodukten, die oftmals in der Holzwerkstoffindustrie weiterverarbeitet werden. Diese Entscheidung liegt allerdings darin begründet, dass im CaReWood-System die Nebenprodukte ebenfalls vollständig verbrannt werden, obwohl auch im CaReWood-System Nebenprodukte anfallen, die frei von Kontaminierung sind und daher für eine stoffliche Verwertung geeignet wären.

In dem Prozess wird die Verbrennung der Rinde, der Schwarten und des Sägemehls modelliert. Um eine vergleichbare Datenqualität zu gewährleisten, wurden für die Verbrennung die Sachbilanzdaten von der Verbrennung von AI Holz wie in Abschnitt 6.2.2.2 beschrieben, verwendet. Da es sich in diesem Prozess jedoch um Frischholz handelt, wurde

die Energieproduktion für eine Holzfeuchte von u = 70% angepasst. Die Berechnung der erzeugten Energiemenge sowie die Sachbilanzdaten sind in Abschnitt 6.2.2.2 und Tabelle 16 beschrieben.

Die erzeugte Energie wird als Prozessenergie im Sägewerk und dem Trocknungsprozess verwendet. Die überschüssige Energie wird in das Versorgungsnetz eingespeist.

6.2.3.1.5 Trocknung von Nadelschnittholz

Es wurde angenommen, dass das Schnittholz vor der weiteren Verarbeitung im Sägewerk technisch getrocknet wird. Zur transparenten Vergleichbarkeit mit dem CaReWood-System wurde derselbe Ansatz zur Modellierung der Trocknung von Schnittholz aus Frischholz gewählt, wie für die Trocknung der Altholzlamellen im CaReWood-System. Aus diesem Grund wurden die gleichen Sachbilanzdaten wie in Abschnitt 6.2.1.5 und in Tabelle 10 beschrieben, verwendet. Für die Holzfeuchte wurde ein Wert von $u_i = 70\%$ für das Frischholz angenommen. Wie im CaReWood-System beträgt die Endfeuchte des Schnittholzes $u_e = 13\%$.

6.2.3.1.6 Brettschichtholzherstellung aus Nadelschnittholz

In der Regel wird das Schnittholz vom Sägewerk zum Brettschichtholzproduzenten transportiert. Die Sachbilanzdaten für den Transport des Schnittholzes sind in Abschnitt 6.2.3.1.2 beschrieben. Die Modellierung der Sachbilanz für die Herstellung des Brettschichtholzes aus Frischholzlamellen basiert auf dem gleichen Ansatz wie er für die Altholzlamellen in Abschnitt 6.2.1.7 und Tabelle 13 beschrieben wurde. Der Klebstoffbedarf für die Herstellung von BSH aus Frischholz entspricht dem mittleren Klebstoffbedarf aus dem CaReWood-System, d. h. 10,1 kg/m³ Brettschichtholz.

6.2.3.2 Sachbilanz für das Gutschriftsystem zur Produktion von Strom und Wärme

Die Sachbilanzdaten zur Produktion von Strom entsprechen dem nationalen Strommix für Deutschland und stammen aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016).

Da kein Wärmemix für Deutschland in Datenbanken vorhanden ist, wurde die Sachbilanz auf Basis von Daten zum länderspezifischen Wärmemix für 2014 (EC 2017) in Kombination mit Prozessen aus der Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) modelliert. Die Sachbilanzdaten für den Wärmemix für Deutschland sind in Tabelle 20 zusammengefasst.

Tabelle 20 Sachbilanzdaten für den Wärmemix für Deutschland für das Gutschriftsystem zur Produktion von Wärme und Strom. EI 3.3 = Ecoinvent Datenbank v. 3.3 (Wernet et al. 2016), EwS = Europe without Switzerland.

	Quantity	Unit	Reference for quantity	LCI	Reference (LCI)
Input					
Heat	0.098	MJ	Own calculation	heat and power co-generation, natural gas, 1MW electrical, lean burn (EwS)	EI 3.3
	0.034	MJ	calculation	heat production, natural gas, at industrial furnace >100kW (EwS)	EI 3.3
	0.032	MJ		heat production, natural gas, at industrial furnace low-NOx >100kW (EwS)	EI 3.3
	0.004	MJ		heat and power co-generation, natural gas, combined cycle power plant, 400MW electrical (DE)	EI 3.3
	0.229	MJ		heat and power co-generation, natural gas, conventional power plant, 100MW electrical (DE)	EI 3.3
	0.032	MJ		heat production, natural gas, at boiler modulating >100kW (EwS)	EI 3.3
	0.009	MJ		heat and power co-generation, lignite (DE)	EI 3.3
	0.013	MJ		treatment of blast furnace gas, in power plant (DE)	EI 3.3
	0.295	MJ		heat production, at hard coal industrial furnace 1-10MW (EwS)	EI 3.3
	0.134	MJ		heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 (DE)	EI 3.3
	0.081	MJ		heat, from municipal waste incineration to generic market for heat (DE)	EI 3.3
	0.002	MJ		heat production, light fuel oil, at industrial furnace 1MW (EwS)	EI 3.3
	6.84E-5	MJ		heat and power co-generation, oil (DE)	EI 3.3
	0.025	MJ		heat and power co-generation, hard coal (DE)	EI 3.3
	0.006	MJ		heat production, heavy fuel oil, at industrial furnace 1MW (DE)	EI 3.3
	0.003	MJ		treatment of coal gas, in power plant (DE)	EI 3.3
Output	-				
Heat	1.00	MJ			

6.3 Ergebnisse der Wirkungsabschätzung

In den nachfolgenden Kapiteln werden die Ergebnisse der Wirkungsabschätzung für die beiden Systeme dargestellt. Zunächst erfolgt in Abschnitt 6.3.1.1 eine nähere Betrachtung der Umweltwirkungen des CaReWood-Prozesses aus dem CaReWood-System (d. h. ohne Gutschriften) in einer Prozessgruppenanalyse, um die wesentlichen Einflussprozesse im CaReWood-Prozess zu identifizieren. Aus der Prozessgruppenanalyse lassen sich Ansätze zur Optimierung hinsichtlich der Umweltwirkungen ableiten. Analog dazu erfolgt in Abschnitt 6.3.1.2 eine Prozessgruppenanalyse für den Verbrennungsprozess aus dem Referenzsystem.

In den nachfolgenden Abschnitten werden die beiden Systeme miteinander verglichen. Dazu werden die Ergebnisse für die drei Szenarien average-case, best-case und worst-case dargestellt und analysiert (Abschnitt 6.3.2.1). In Abschnitt 6.3.2.2 werden die einzelnen Parameter, wie sie im Abschnitt 6.1.2.4 dargestellt sind, auf ihren Einfluss auf die Umweltwirkungen des CaReWood-Systems untersucht.

Für die Umweltwirkungskategorien werden folgende Abkürzungen verwendet:

GWP ff	Treibhauspotential 100 fossil, exkl. biogenes CO ₂	$kg CO_2 eq.$
GWP bio	Treibhauspotential 100 inkl. biogenes CO ₂	kg CO ₂ eq.
ADP ff	Verbrauch abiotischer fossiler Ressourcen (fossil fuels)	MJ
AP	Versauerungspotential	kg SO ₂ eq.
EP	Eutrophierungspotential	kg PO ₄ eq.
HTP	Humantoxizitätspotential	kg 1,4-dcb. eq
ODP	Ozonabbaupotential	kg CFC-11 eq.
ALO	Landflächenbelegung	m² x a

6.3.1 Systemanalysen

6.3.1.1 CaReWood-System

Zur Analyse des CaReWood-Prozesses wurden alle Prozesse zu ausgewählten Prozessgruppen zugeordnet: Verbrennung (Incineration), Klebstoffherstellung (Glue production), Infrastruktur (Infrastructure), Transport (Transport) sowie Betriebsmittel und Sonstiges (Utilities and other). Der Beitrag der jeweiligen Prozessgruppen zu den Umweltwirkungen des CaReWood-Prozesses sind in Abbildung 5 dargestellt. Der Verbrauch von Prozessenergie (Strom und Wärme) wird nicht ausgewiesen, da die Prozessenergie vollständig durch die in der KWK-Anlage erzeugte Energie bereitgestellt wird. Dadurch entstehen keine direkten Umweltwirkungen durch den Verbrauch von Strom oder Wärme.

Die Produktion des Klebstoffes für die Brettschichtholzproduktion trägt mit 35% wesentlich zu der Umweltwirkungskategorie ADP ff bei. Dies lässt sich auf die energieintensive

Produktion sowie die Verwendung fossiler Ressourcen als Rohstoff für die Klebstoffherstellung zurückführen. Da ein Teil der fossilen Rohstoffe im Produkt verbleibt, ist der Beitrag zum GWP ff mit 24% etwas geringer, was sich ebenfalls mit der energieintensiven Produktion begründen lasst. Der Einfluss der Produktion der Klebstoffe führt des Weiteren zu einem Beitrag von 30% zur Kategorie ALO und 27% zum ODP.

Die Verbrennung der Altholzreste im CaReWood-System trägt mit 70% zu der Kategorie HTP bei. Dies lässt sich vor allem auf die hohen Feinstaubemissionen bei der Verbrennung von Holz zurückführen. Mit 43% und 41% trägt die Verbrennung maßgeblich zu den Kategorien AP und EP bei.

Infrastrukturanlagen tragen mit 41% wesentlich zur Kategorie ALO bei, was sich auf die physisch belegte Fläche der Industriegebäude zurückführen lässt.

Die Prozessgruppe Transport umfasst den Transport des Altholzes von der Anfallsstelle zur CaReWood-Anlage sowie die Distribution des Brettschichtholzes. Der Transport trägt mit 31% am stärksten zur Wirkungskategorie ODP und mit 22% und 25% zu den Wirkungskategorien GWP ff und ADP ff bei. Die Umweltwirkungen lassen sich im Wesentlichen auf die Emissionen durch die Produktion und anschließende Verbrennung des Dieselkraftstoffs zurückführen.

Die Kategorie Betriebsmittel und Sonstiges umfasst sämtliche Verbräuche an Schmiermitteln, Werkzeugen, Diesel für die Werkslogistik oder Prozessen wie der Abfallbeseitigung. Die Prozessgruppe trägt mit 38% zum ODP, mit 32% zum GWP ff und mit 35% zum ADP ff bei. Dies lässt sich mit dem hohen Anteil fossiler Rohstoffe, die zur Herstellung der Betriebsmittel benötigt werden sowie ihrem direkten Verbrauch in Form von Diesel begründen. Dementsprechend liegen aufgrund der Verbrennungsemissionen die Beiträge zum AP, EP und HTP zwischen 13% und 25%.

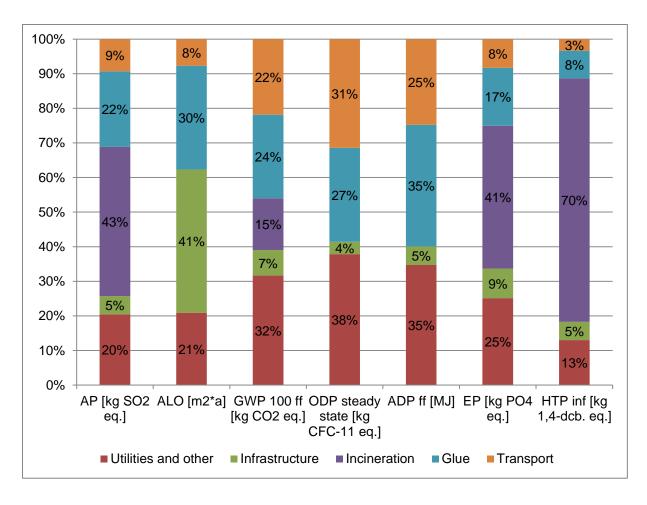


Abbildung 5 Beitrag verschiedener Prozessgruppen zu den Umweltwirkungen des CaReWood-Prozesses aus dem CaReWood-System. Werte <1% werden nicht angezeigt.

6.3.1.2 Referenzsystem Verbrennung

Analog zum CaReWood-System sind in Abbildung 6 die Beiträge der Prozessgruppen Transport (Transport) und Verbrennung (Incineration) zu den Umweltwirkungen des Verbrennungsprozesses aus dem Referenzsystem dargestellt. Aufgrund des geringen Verbrauchs an fossilen Energieträgern im Verbrennungsprozess, trägt der Transportprozess mit 40% zur Kategorie ADP ff durch die Produktion und den Verbrauch von Diesel bei. Die Emissionen aus der Verbrennung und Produktion des Diesels für den Transport trägt mit 45% zum ODP bei. Zu den übrigen Kategorien AP, ALO, GWP ff, EP und HTP trägt überwiegend der Verbrennungsprozess bei. Insbesondere das AP und EP werden aufgrund der hohen Stickoxid- und Schwefelemissionen aus der Verbrennung von (Alt-)holz dominiert. Gleiches gilt für das HTP, das durch die hohen Feinstaubemissionen aus der Holzverbrennung geprägt ist.

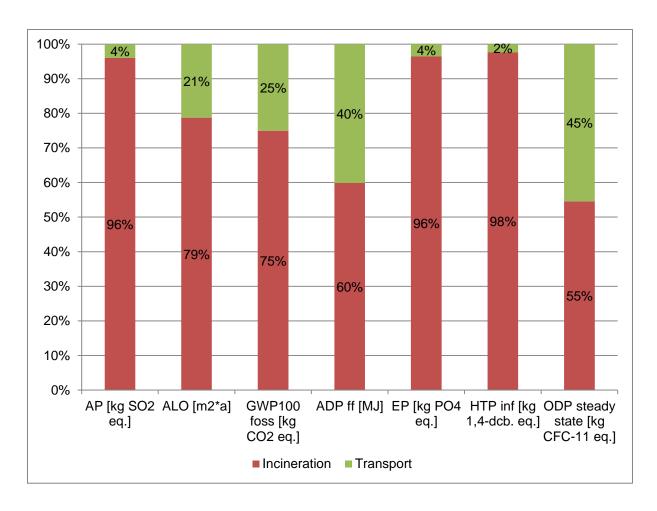


Abbildung 6 Beitrag verschiedener Prozessgruppen zu den Umweltwirkungen des Verbrennungsprozesses aus dem Referenzsystem.

6.3.2 Szenarioanalysen

6.3.2.1 Average-case, best-case und worst-case Szenarien

In Abbildung 7 sind die Umweltwirkungen für das CaReWood-System und das Referenzsystem im Vergleich dargestellt. Die weißen Balken repräsentieren die Differenz aus dem jeweiligen Ziel- und Gutschriftsystem. Wie in dem Abschnitt zuvor werden das Zielsystem und das Gutschriftsystem nach einzelnen Prozessgruppen aufgeschlüsselt dargestellt. Auf diese Weise können jene Prozesse identifiziert werden, die besonders zu den Ergebnissen beitragen.

Die Abbildungen für das best-case und das worst-case Szenario sind im Anhang in Abbildung 27 dargestellt.

Sowohl das CaReWood-System als auch das Referenzsystem weisen Einsparungen in der Kategorie ADP ff auf. Die Umweltwirkungen der Zielsysteme sind deutlich niedriger als die durch die bereitgestellten Produkte vermiedenen Umweltwirkungen. Beide Systeme profitieren maßgeblich durch die Einsparung der Produktion von Strom und Wärme in den Gutschriftsystemen, die im Wesentlichen auf fossilen Energieträgern beruht. Aufgrund der deutlich größeren Energieproduktion im Referenzsystem und der geringeren Aufwendungen, sind die Einsparungen im ADP ff fast doppelt so hoch wie im CaReWood-System, in dem zusätzlich ein größerer Teil der erzeugten Energie als Prozessenergie verbraucht wird. Auch die Einsparungen durch die Produktion von BSH können durch die Energiebereitstellung in dieser Wirkungskategorie nicht kompensiert werden. Hinzu kommt, Umweltwirkungen des CaReWood-Systems ohne Gutschriften aufgrund der Klebstoffproduktion, den Transportprozessen und sonstigem Betriebsmittelbedarf fast drei Mal so hoch sind, wie die Umweltwirkungen der Verbrennung im Referenzsystem.

Das mit dem ADP ff in Bezug stehende GWP ff zeigt ein ähnliches Bild. Die Differenz ist für beide Systeme negativ, sodass die Verwertung von 1 t Altholz im Vergleich zu den jeweiligen Gutschriftsystemen, zu Einsparungen im Treibhauspotential führt. Aufgrund der größeren Einsparungen fossil basierter Treibhausgasemissionen im Referenzsystem sind die Einsparungen im Referenzsystem fast doppelt so hoch wie im CaReWood-System. Wie beim ADP ff liegen die Umweltwirkungen des CaReWood-Systems aufgrund des Verbrauchs an Klebstoff, der Transportaufwendungen und den sonstigen Betriebsmittel fast doppelt so hoch wie für die Verbrennung des Altholzes. Da wiederum durch die BSH Produktion aus Frischholz weniger Treibhausgase je Materialeinheit eingespart werden, ist das dadurch eingesparte GWP ff deutlich niedriger.

Ergänzend zum GWP ff wurde das GWP bio ausgewiesen. Beim GWP bio wird zusätzlich zu den fossil basierten Treibhausgasen das biobasierte CO₂ bilanziert. In diesem Fall wurde angenommen, dass das CO₂ zu einem vorherigen Zeitpunkt aus der Atmosphäre aufgenommen wurde, sodass beide Zielsysteme mit einer Gutschrift belegt sind (aggregiert in der Prozessgruppe Other in Abbildung 7). Gleichzeitig wird das bei der Verbrennung emittierte biogene CO₂ erfasst und als positive Emissionen ausgewiesen (Prozessgruppe Incineration). Die Differenz zwischen den beiden Incineration-Balken im Referenz- und dem CaReWood-System in Höhe von etwa 500 kg CO₂ eq. repräsentiert das durch die stoffliche Nutzung des Altholzes weiterhin im CaReWood-Produkt gebundene CO₂. Des Weiteren wurde angenommen, dass das CaReWood-System durch die Vermeidung der Produktion von

BSH aus Frischholz auch die Sequestrierung von CO₂ während des Baumwachstums vermeidet. Aus diesem Grund wird das CaReWood-System mit positiven Treibhausgasemissionen in der Prozessgruppe Avoided forestry belastet. Insgesamt zeigt das GWP bio gegenüber dem GWP ff, dass die tatsächlichen Treibhausgasmissionen in beiden Systemen deutlich höher sind als es durch das GWP ff dargestellt wird.

Die für die Holzverbrennung relevante Wirkungskategorie HTP ist für beide Systeme negativ. Aufgrund der hohen Feinstaubemissionen bei der Holzverbrennung Verbrennungsprozess des Altholzes den größten Beitrag zu den Umweltwirkungen in beiden Systemen. Auf Gutschriftseite profitieren beide Systeme von der Einsparung von konventioneller Strom- und Wärmeproduktion. In beiden Systemen sind die vermiedenen Umweltwirkungen aus der Produktion von Strom und Wärme größer als die HTP Werte aus der Verbrennung des Altholzes. Auch wenn der Anteil an Kohle und nachwachsenden Rohstoffen zur konventionellen Wärme- und Stromproduktion hoch ist, scheint das Ergebnis nicht ganz plausibel. Die HTP Werte basieren auf den Inventardaten für die Verbrennung von Altholz aus Speckels (2001), während die Inventardaten zur Produktion von Strom und Wärme in den Gutschriftsystemen aus der zu diesem Zeitpunkt aktuellsten Ecoinvent Datenbank v. 3.3 stammen. Aufgrund der Ergebnisse wird vermutet, dass zwischen beiden Quellen für die Inventardaten große Qualitätsunterschiede in der Berücksichtigung der Feinstaubemissionen liegen. Dies würde zur Folge haben, dass in beiden Zielsystemen die Emissionen aus der Altholzverbrennung unterrepräsentiert sind. Aufgrund fehlender alternativer Datensätze zur Verbrennung von Altholz wurde von einer Änderung der Inventardaten abgesehen.

Die Wirkungskategorie ALO zeigt den großen Vorteil des CaReWood-Systems gegenüber dem Referenzsystem. Die stoffliche Nutzung von 1 t Altholz führt zu einer Einsparung von über 1500 m² x a Landflächenbelegung im CaReWood-System.

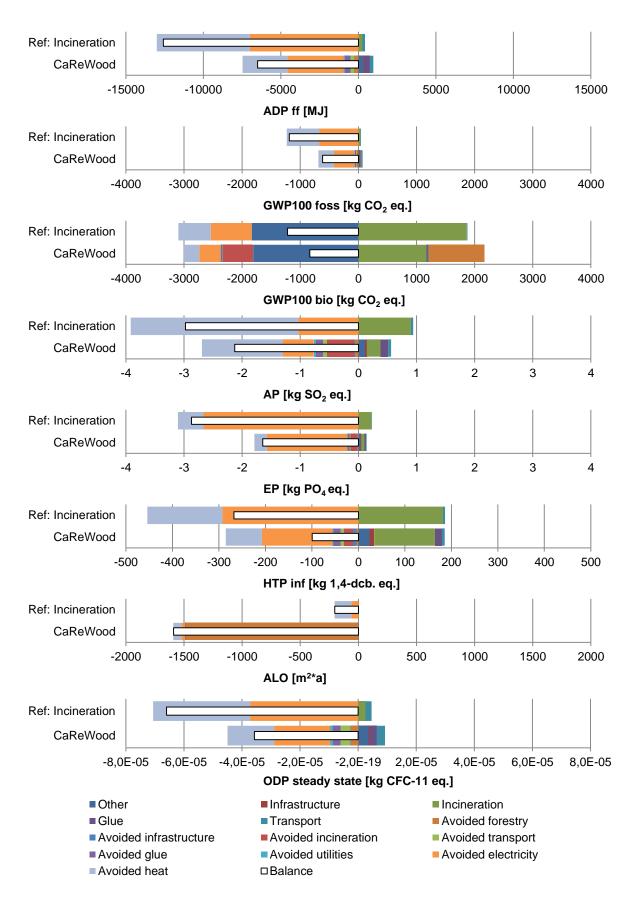


Abbildung 7 Umweltwirkungen des CaReWood-Systems im Vergleich zum Referenzsystem Verbrennung bezogen auf 1 t Altholz für das average-case Szenario. Die weißen Balken repräsentieren die Differenz aus Zielund Gutschriftsystem.

Für den Vergleich des average-case, best-case und worst-case Szenarios wurden die Umweltwirkungen relativ zum Referenzsystem in Abbildung 8 dargestellt. Die Abbildung zeigt die Differenz zwischen den Systemen bezogen auf das CaReWood-System.

Wie zu erwarten zeigt sich eine Staffelung der drei Szenarien in den Ergebnissen. In der Kategorie AP ist der Vorteil des Referenzsystems gegenüber dem CaReWood-System im worst-case Szenario am höchsten und im best-case Szenario am niedrigsten. In den übrigen Kategorien GWP ff, GWP bio, ADP ff, EP, HTP und ODP ist der Vorteil des Referenzsystems gegenüber dem CaReWood-System im worst-case Szenario am niedrigsten und im best-case Szenario am höchsten. In diesen Kategorien zeigt sich der Einfluss der Energieproduktion in den Gutschriftsystemen am deutlichsten. Obwohl es sich um das best-case Szenario handelt und somit am meisten Altholz zu einem neuen Produkt verarbeitet wird, schneidet das Szenario im Vergleich zum Referenzsystem am schlechtesten ab. Aufgrund des geringen für die Verbrennung vorgesehen Altholzanteils werden dem System niedrige Gutschriften für die Energieproduktion bereitgestellt. Da die Gutschriften für die Energieproduktion höher sind als für die Substitution von Brettschichtholz, wird eine hohe Ausbeute im best-case Szenario zum Nachteil im Vergleich zum Referenzsystem und den anderen Szenarien.

Für die Kategorie ALO zeigt das CaReWood-System in allen Szenarien Vorteile gegenüber dem Referenzsystem. Erwartungsgemäß sind die Vorteile im best-case Szenario am höchsten und im worst-case Szenario am niedrigsten.

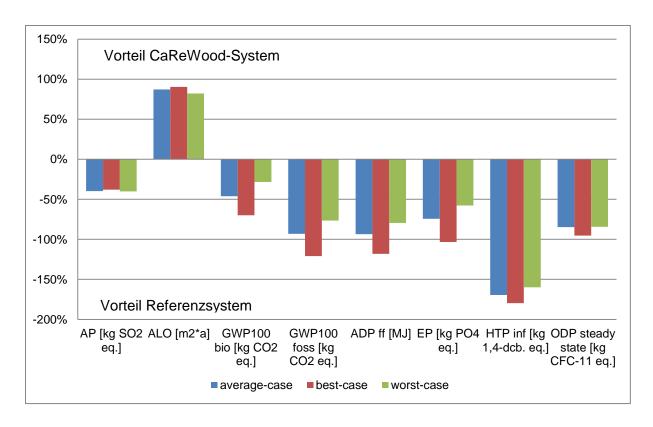


Abbildung 8 Umweltwirkungen des CaReWood-Systems relativ zu den Umweltwirkungen des Referenzsystems für die drei Szenarien average-case, best-case und worst-case.

6.3.2.2 Analyse der Einflussparameter Klebstoffverbrauch, Holzfeuchte und Ausbeute

Zur Analyse des Einflusses von verschiedenen Parametern auf die Umweltwirkungen des CaReWood-Systems werden die Ergebnisse für die Szenarien A1-6 relativ zu den Ergebnissen aus dem average-case Szenario ausgewertet. Der Einfluss der Ausbeute des CaReWood-Prozesses auf die Umweltwirkungen ist in Abbildung 9 dargestellt. In Abbildung 10 ist der Einfluss des Klebstoffverbrauchs und in Abbildung 11 der Einfluss der Holzfeuchte des Altholzes auf die Umweltwirkungen des CaReWood-Systems zusammengefasst. Ein erster Vergleich der drei Abbildungen zeigt, dass der Einfluss der Ausbeute relativ zum average-case Szenario den größten Einfluss hat, vor der Holzfeuchte und dem Klebstoffverbrauch. Es muss allerdings angemerkt werden, dass die Ausbeute und die Holzfeuchte mehrere Prozesse beeinflussen im Gegensatz zum Klebstoffverbrauch. Eine höhere Ausbeute bewirkt zum Beispiel einen höheren Klebstoffverbrauch und mehr Transportleistungen. Ähnlich ist es mit der Holzfeuchte, die nicht nur den Trocknungsprozess sondern auch die Verbrennung und durch die Gewichtsunterschiede die Transportprozesse beeinflusst.

Bei einer Ausbeute von 18% schneidet das CaReWood-System in den Kategorien AP, GWP bio, GWP ff, ADP ff, EP, HTP, und ODP im Vergleich zum average-case Szenario besser ab. Die Differenz aus Ziel- und Gutschriftsystem liegt zwischen 12% (AP) und 25% (HTP) höher als im average-case System. Bei einer besseren Ausbeute von 35% verschlechtert sich die Differenz aus Ziel- und Gutschriftsystem gegenüber dem average-case Szenario in den genannten Kategorien um 7% (AP) bis 18% (HTP). Umgekehrt reagiert die Kategorie ALO: Je mehr Altholz im CaReWood-Produkt verwertet wird, desto größer sind die Einsparungen an Landfläche. Die Ergebnisse bestätigen, welchen Einfluss die Auswahl der Gutschriftsysteme auf die Ergebnisse hat. Obwohl das CaReWood-System mit steigender Ausbeute für sich genommen zu bevorzugen ist, da eine größere Menge des Zielproduktes produziert wird, schneidet es im Vergleich zu Systemen mit geringerer Ausbeute schlechter ab, wenn die potentiell vermiedenen Umweltwirkungen hinzugezogen werden. Somit bestimmt die Zusammensetzung der Energieträger für den Strom- und Wärmemix in Deutschland maßgeblich die Ergebnisse des Vergleichs.

Der Einfluss des Klebstoffverbrauchs auf die Umweltwirkungen des CaReWood-Systems im Vergleich zum average-case Szenario ist mit <1% und 4% sehr gering. Erwartungsgemäß reduzieren sich die Umweltwirkungen bei einer Reduktion des Klebstoffverbrauchs und steigen bei einem höheren Klebstoffverbrauch entsprechend an.

Die Holzfeuchte des Altholzes beeinflusst den Transportaufwand, die Energieproduktion bei der Verbrennung sowie den Energieverbrauch während der Trocknung und damit auch die Menge der in das Versorgungsnetz eingespeisten Energie. Insgesamt sinken die Umweltwirkungen im Vergleich zum average-case Szenario, wenn die Holzfeuchte des Altholzes der Endfeuchte des Produkts entspricht und keine Trocknung erfolgen muss. Entsprechend liegen die Umweltwirkungen bei einer Holzfeuchte von 26% deutlich höher, was mit dem erhöhten Transport- und Trocknungsaufwand sowie der dadurch reduzierten gutgeschriebenen Energieproduktion begründet werden kann.

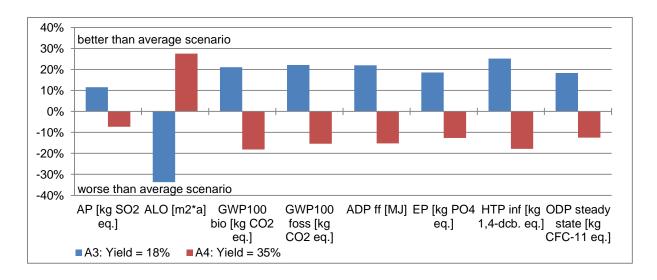


Abbildung 9 Einfluss der Ausbeute (Yield) des CaReWood-Prozesses auf die Umweltwirkungen des CaReWood-Systems, relativ zum average-case Szenario.

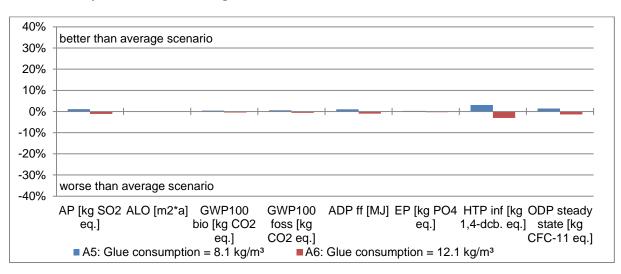


Abbildung 10 Einfluss des Klebstoffverbrauchs (Glue consumption) im CaReWood-Prozess auf die Umweltwirkungen des CaReWood-Systems, relativ zum average-case Szenario.

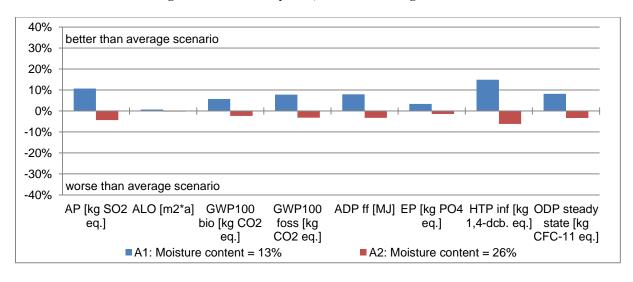


Abbildung 11 Einfluss der Holzfeuchte (Moisture content) des Altholzes auf die Umweltwirkungen des CaReWood-Systems, relativ zum average-case Szenario.

6.4 Diskussion

6.4.1 Diskussion der Ergebnisse aus den Systemanalysen

Die Umweltwirkungen des CaReWood-Prozesses werden von den Prozessgruppen Altholzverbrennung, Klebstoffproduktion und der Kategorie Betriebsmittel und Sonstiges wesentlich beeinflusst. Produktionsbasierte Prozessgruppen wie die Klebstoffproduktion und Betriebsmittel und Sonstiges tragen überwiegend zu den Umweltwirkungen GWP ff und ADP ff und ODP bei. Der Aufwand zur Herstellung von Klebstoffen insbesondere, aber auch anderen Betriebsstoffen wie Schmiermitteln oder Diesel, ist besonders energie- und ressourcenaufwendig und basiert größtenteils auf fossilen Rohstoffen, sodass diese Prozesse mit hohen Umweltwirkungen verbunden sind. Diese Beobachtung deckt sich mit anderen Studien wie Werner and Richter (2007) und Höglmeier et al. (2014).

Der emissionsintensive Verbrennungsprozess zur Entsorgung des kontaminierten Altholzes dominiert die Kategorien AP, EP und HTP. Dies gilt sowohl für den CaReWood-Prozess, insbesondere aber für den Referenzprozess. Durch die Verbrennung von Altholz können die enthaltenen Chemikalien aus Beschichtungen oder Holzschutzmitteln stark toxische Emissionen ausbilden. Insbesondere Schwermetalle wie Zink, Blei, Chrom, Cadmium oder Chlor- und Fluorverbindungen tragen zu den hohen Umweltwirkungen durch die Verbrennung bei. Zudem trägt der bei der Verbrennung von Holz erzeugte Feinstaub insbesondere zum HTP bei.

Das Optimierungspotential im CaReWood-Prozess liegt in den drei Prozessgruppen Klebstoffproduktion, Betriebsmittel und Transport. Über eine optimierte Logistik (Vgl. Arbeitspaket 3), können die Transportdistanzen reduziert, Leerfahrten vermieden und somit die Verbräuche und Emissionen reduziert werden. Ein optimierter CaReWood-Prozess kann zu einer Reduktion des Klebstoffverbrauchs beitragen, wenn die Lamellen möglichst in großen Dimensionen erhalten bleiben. Erst mit alternativen Klebstoffsystemen, z. B. unter Verwendung nachwachsender Rohstoffe, werden stärkere Reduktionen der Umweltwirkungen und eine Reduktion der Abhängigkeit von fossilen Rohstoffen möglich sein. Selbiges gilt für Betriebsmittel, die ebenfalls unter der energieintensiven und aufwendigen Verwendung von fossilen Rohstoffen hergestellt werden. Die Verbrennung der kontaminierten Abfälle hingegen lässt sich nicht vermeiden; die Entsorgung der toxischen Substanzen aus dem Materialkreislauf ist essentiell. Da stellt die Verbrennung die einzige Option dar. Letztlich

kann die Verbrennung nur durch optimale Auslastung der Anlage, hohe Verbrennungstemperaturen sowie effiziente Technologien zur Rauchgasreinigung zur Reduktion der Umweltwirkungen beitragen. Ganz vermeiden lassen sie sich nicht.

6.4.2 Diskussion der Ergebnisse aus den Szenarioanalysen

Bei separater Betrachtung des CaReWood-Systems zeigt sich, dass die Produktion von Brettschichtholz und Energie aus Altholz geringere Umweltwirkungen aufweist als die Produktion der gleichen Produkte aus Primärmaterial. Insgesamt ist damit der CaReWood-Prozess als umweltfreundliche Option zur Verwertung von Altholz zu beurteilen. Der Vorteil des CaReWood-Prozesses gegenüber den Primärmaterialprozessen aus dem Gutschriftsystem liegt darin begründet, dass die Produktion des Altholzes nicht mit Umweltwirkungen belastet ist, sowie dass bei einzelnen Arbeitsschritten geringere Umweltwirkungen verursacht werden (z. B. Trocknung). Im Gutschriftsystem hingegen müssen die Primärrohstoffe zunächst produziert werden. Die damit verbundenen Umweltwirkungen sind so hoch, dass selbst die zusätzlichen Aufwendungen im CaReWood-Prozess gegenüber den Prozessen im Gutschriftsystem diese nicht kompensieren. Dass das Altholz nicht mit Umweltwirkungen aus einem früheren Lebenszyklus belastet ist, ist eine oft verwendete (z. B. Rivela et al. 2006; Höglmeier et al. 2014) aber ebenso streitbare Annahme. Alternativ könnte z. B. über Allokation ein Teil der Aufwendungen aus dem ersten Lebenszyklus auf das Altholz übertragen werden.

Der Vergleich des CaReWood-Systems mit dem Referenzsystem zeigt überwiegend Vorteile des Referenzsystems. Lediglich in der Kategorie ALO zeigt das CaReWood-System größere Vorteile als das Referenzsystem. Selbst bei einer Veränderung einzelner Parameter bleiben die Tendenzen erhalten. Die Vorteile des Referenzsystems lassen sich auf die Einsparungen durch Substitution von Energie, die auf Basis überwiegend fossiler Energieträger erzeugt wird, zurückführen. Die Umweltwirkungen zur Produktion von Energie sind mit so hohen Umweltwirkungen in allen Kategorien verbunden, dass eine Vermeidung zu großen Gutschriften führt. Je höher also die produzierte Energie, desto größer die Einsparungen. Dies wird im Falle von Systemen auf Basis nachwachsender Rohstoffe zudem verstärkt, da die Produktion von Holz und anderen nachwachsenden Rohstoffen Umweltwirkungen verbunden ist, sodass die Einsparungen im Vergleich deutlich niedriger sind.

Der Vorteil der stofflichen Altholznutzung zeigt sich durch die Vermeidung der forstlichen Produktion in Form der eingesparten Landfläche. Die Kategorie Landflächenbelegung wird bei Auswertung von Ökobilanzergebnissen oftmals vernachlässigt. Dabei ist sie insbesondere bei nachwachsenden Rohstoffen von großer Bedeutung (Pawelzik et al. 2013). Gerade für dicht besiedelte Länder wie Deutschland wird in einer biobasierten Ökonomie der effiziente Umgang mit dieser knappen Ressource zunehmend an Bedeutung gewinnen (UNEP 2014). In der Praxis findet keine direkte Einsparung der Landfläche statt. Vielmehr ist davon auszugehen, dass sie weiterhin für die Produktion von Holz verwendet wird. Die dadurch ausgelösten indirekten Kaskadeneffekte (z. B. Erhöhung des Holzproduktepools und des Kohlenstoffspeichers, Substitution von Nicht-Holz-Produkten) wurden im Rahmen des Forschungsvorhabens nicht bewertet. Dies sollte in künftigen Forschungsprojekten zur Kaskadennutzung von Holz schwerpunktmäßig erfolgen.

6.4.3 Diskussion der Ergebnisse zur Analyse der Einflussparameter Holzfeuchte, Klebstoffverbrauch und Ausbeute

Die Analyse verschiedener Parameter hinsichtlich ihres Einflusses auf die Umweltwirkungen des CaReWood-Systems zeigt, dass die Ausbeute des CaReWood-Prozesses die Umweltwirkungen des Systems am stärksten beeinflusst. Weniger Einfluss haben die Holzfeuchte und der Klebstoffverbrauch. Insgesamt zeigt sich, dass die Systeme im Vergleich zum average-case Szenario bei einer höheren Ausbeute und niedrigerem Klebstoffverbrauch bzw. Holzfeuchte die Umweltwirkungen sich erhöhen und bei einer schlechteren Ausbeute sowie einem hohen Klebstoffverbrauch und einer hohen Holzfeuchte die Umweltwirkungen niedriger werden. Für den Klebstoffverbrauch und die Holzfeuchte entspricht dieses Ergebnis den Erwartungen. Im Falle der Ausbeute widerspricht das Ergebnis der Intuition. Obwohl der Prozess vermeintlich besser ist, schneidet das Gesamtsystem im Vergleich schlechter ab, da die Einsparungen im Gutschriftsystem die Ergebnisse so stark beeinflussen. Die Wechselwirkung zwischen der Kategorie ALO und den anderen Kategorien beschreibt die zentrale Dynamik des Systemvergleichs. Die Verbrennung von Altholz führt zu hohen Einsparungen in den Kategorien GWP ff und ADP ff, während die stoffliche Nutzung von Altholz zu hohen Einsparungen im Landflächenverbrauch führt. Zusammengefasst gilt: Je höher die Ausbeute des CaReWood-Prozesses, desto höher die Einsparungen an Landfläche. Je geringer die Ausbeute, desto höher die Einsparungen im GWP ff und ADP ff.

Der hohe Einfluss der Ausbeute auf die Ergebnisse liegt darin begründet, dass die Ausbeute als Metaparameter Einfluss auf mehrere Prozesse hat. Durch die höhere Ausbeute wird beispielsweise mehr Klebstoff für die Produktion von Brettschichtholz benötigt. Außerdem bedarf es höheren Aufwendungen für Betriebsmittel, Infrastruktur oder Transportleistungen. Gleichermaßen reduziert sich die Menge an Altholz für die Verbrennung, sodass auch das Gutschriftsystem entsprechend betroffen ist.

Ähnlich der Ausbeute beeinflusst die Holzfeuchte ebenfalls mehrere Prozesses. Sowohl die Transportleistung, die Trocknung und die in das Versorgungsnetz eingespeiste Energiemenge werden durch die Holzfeuchte beeinflusst. Die Klebstoffmenge hingegen beeinflusst keinen weiteren Prozess, sodass hier der Einfluss von Veränderungen auf das Gesamtsystem vergleichsweise gering ist. Neben der Ausbeute bietet die Holzfeuchte des Altholzes einen guten Ansatzpunkt für die Optimierung des CaReWood-Systems. Da die Holzfeuchte erst im Zuge der Abriss-, Transport- und Lagertätigkeiten ansteigt, kann durch eine optimierte Logistikkette das Altholz trockengehalten werden und die Umweltwirkungen um bis zu 10% reduzieren.

6.4.4 Kritische Bewertung der Methodik

Die Studie zeigt, dass bei vergleichenden Ökobilanzen durch die Verwendung der Gutschriftmethode die Ergebnisse maßgeblich von der Definition der gutgeschriebenen Systeme und Prozesse beeinflusst werden. Der Vergleich beider Systeme wird wesentlich von den Einsparungen durch die Substitution von Energie beeinflusst. Dieser Effekt wird ferner durch den Vergleich von bio-basierten und fossil-basierten Produkten forciert. Eine Variation der Prozesse im Gutschriftsystem würde demnach auch die Ergebnisse wesentlich verändern. So könnte alternativ anstelle von Brettschichtholz aus Frischholz ein Stahlträger oder eine Betonkonstruktion substituiert werden. Die eingesparten Umweltwirkungen wären signifikant anders als bei dem Brettschichtholzträger. Des Weiteren kann anstelle des nationalen Stromund Wärmemixes die Substitution von Strom und Wärme aus Frischholz angenommen werden. Auch in diesem Fall würde sich der Vergleich der Systeme maßgeblich verändern und zu anderen Schlussfolgerungen führen. Dass die Definition der Prozesse in der Systemerweiterung einen wesentlichen Einfluss auf die Aussage von vergleichenden Ökobilanzen hat, ist ein viel diskutiertes Problem (Werner and Richter 2007; Heijungs and Guinée 2007). In Heijungs and Guinée (2007) wird argumentiert, dass die Auswahl der

Systemerweiterungsprozesse oftmals zu konträren Ergebnissen trotz der gleichen Fragestellung führen kann. Ferner kann durch die Wahl der Systeme maßgeblich Einfluss auf die Aussage einer Studie genommen werden. Aus diesem Grund wäre eine Betrachtung verschiedener Szenarien notwendig. Allerdings ist es schwierig zu beurteilen, welche Produkte und Prozesse tatsächlich in der Realität substituiert werden. Und je mehr Ergebnisse und Szenarien mit möglicherweise konträren Schlussfolgerungen bereitgestellt werden, desto schwieriger wird die Entscheidungsfindung.

Dieselben Probleme finden sich auch in anderen Studien zur Verwendung von Holz. Gärtner et al. (2013) verwendeten einen ähnlichen Bewertungsansatz, haben jedoch die gesamte Kaskadennutzung von Holz betrachtet und die Funktionen der Holzkaskade mit der Substitution von Nicht-Holz-Produkten gutgeschrieben. Die Entscheidung für die Wahl von Nicht-Holz-Produkten führt zu deutlichen Vorteilen der stofflichen Holznutzung. Würden alternativ Holz-basierte Produkte im Gutschriftsystem auftreten, würden die Ergebnisse gänzlich anders aussehen. Das gleiche gilt für die Arbeit von Höglmeier et al. (2014), in der die Kaskadennutzung von Altholz mit der Produktion des gleichen Outputs aus Primärholz verglichen wurde. Hier dient Holz als Rohstoff für die stofflichen und energetischen Produkte in den Systemerweiterungsprozessen. Dadurch schneidet die Kaskadennutzung besser ab als die Nutzung von Primärholz. Dennoch schreiben Höglmeier et al. (2014), dass bei der Wahl von fossilen Energieträgern für die energetischen Produkte in der Systemerweiterung zu konträren Ergebnissen führen würde.

Wie in Höglmeier et al. (2014) oder Rivela et al. (2006), könnte für die vorliegende Studie auch die Nutzenkorbmethode verwendet werden. Das Ergebnis beider methodischen Ansätze ist identisch, auch wenn die Ergebnisse der Nutzenkorbmethode leichter zu verstehen sind. Für den Vergleich von mehreren Verwertungsoptionen, wie sie im CaReWood-Projekt, Arbeitspaket 6, für Deutschland und Frankreich durchgeführt wurden, eignet sich die Gutschriftmethode aufgrund der einfacheren Modellierung jedoch besser.

6.4.5 Grenzen der Studie

Die Gutschriftmethode basiert auf der Annahme, dass sich Produkte vollständig durch andere Herstellungsverfahren ersetzen lassen. In dieser Studie wird davon ausgegangen, dass BSH aus Altholz ein BSH aus Frischholz gleichwertig ersetzt. Es ist bereits eingangs angesprochen worden, dass davon ausgegangen wird, dass das BSH aus Altholz nicht vollständig identisch

ist mit dem BSH aus Frischholz. Die Unterschiede belaufen sich auf "weiche" Kriterien wie optische Aspekte, aber auch technische Merkmale wie die Dimensionen oder Festigkeit der Lamellen. Des Weiteren ist die Anwendungspalette der Produkte vermutlich verschieden. Während BSH aus Frischholz im konstruktiven oder tragenden Bereich eingesetzt wird, ist eine derartige Anwendung für das BSH aus Altholz aufgrund fehlender Sortierverfahren und Zulassungen (noch) ausgeschlossen. Derartige Unterschiede sind im Rahmen einer Ökobilanz schwer quantifizierbar, da die Inventardaten eine so detaillierte Auflösung nicht zulassen. Allein einzelne technische Parameter wie z. B. der Klebstoffverbrauch wurden in der Studie berücksichtigt und können einen ersten Einblick in die Unterschiede zwischen den Produkten liefern. Es scheint jedoch mittelfristig realistisch und wurde im Rahmen des CaReWood Projektes durch Demonstratoren belegt, über die Lamelliertechnik Halbfabrikate wie Fensterkanteln aus entsprechend prozessiertem Altholz herzustellen.

Einen noch stärkeren Einfluss auf die Ergebnisse hat die Definition der Produkte und Systeme im Gutschriftsystem, wie bereits in Abschnitt 6.4.4 diskutiert. Da die Studie als beschreibende Ökobilanz modelliert wurde, erfolgte die Definition der Produkte rein subjektiv. Diese Herangehensweise führt nicht nur zu den beschriebenen Fehleinschätzungen, sondern erfasst nur die direkten Effekte der jeweiligen Verwertungsoption. Die indirekten Effekte einer Verwertungsoption bleiben unberücksichtigt. Unter den indirekten Effekten ist z. B. eine Veränderung auf Marktebene zu verstehen, die durch ein neues technologisches Verfahren wie dem CaReWood-Prozess entsteht. Mit neuen Prozessen werden Stoffströme umgelenkt, sodass beispielsweise weniger Material für eine alternative Nutzung zur Verfügung steht oder Produkte auf dem Markt verdrängt werden. In diesem Fall wurde angenommen, dass ausschließlich BSH aus Frischholz substituiert wird. Es ist jedoch ebenso möglich, dass ein Pool an Bauteilen aus verschiedenen Materialien substituiert wird.

Um die Markteffekte einer Entscheidung in der Ökobilanzierung zu erfassen, wurde die konsequentielle Ökobilanzierung entwickelt. Im Gegensatz zur beschreibenden Ökobilanz werden auch jene Prozesse aus umgebenden Marktsektoren in die Bewertung einbezogen, die durch die Veränderungen im Zielsystem beeinflusst werden. Die Definition dieser sog. Grenztechnologien ist über heuristische Methoden möglich, und ist damit allerdings ebenfalls durch subjektive Entscheidungen beeinflusst. Im Idealfall können Marktmodelle herangezogen werden, mit denen die betroffenen Grenztechnologien ermittelt werden können (Earles and Halog 2011).

Ein weiterer Aspekt, der in der Studie nicht berücksichtigt wurde, ist der Effekt der Kohlenstoffspeicherung und der Auswirkungen von verzögerten Emissionen. Die Nutzung von Altholz in stofflichen Anwendungen führt dazu, dass der Kohlenstoff weiterhin für die Zeit der nächsten Nutzung im Holz gespeichert bleibt und erst zu einem späteren Zeitpunkt in die Atmosphäre emittiert wird. Des Weiteren ist zu berücksichtigen, dass auf der eingesparten Landfläche weiterhin Holz für die stoffliche Nutzung produziert werden kann, was bei einer stofflichen Nutzung die Menge des gespeicherten Kohlenstoffs im Produktspeicher erhöht. Für die Bewertung des Treibhauspotenzials von nachwachsenden Rohstoffen wird inzwischen eine Berücksichtigung des biogenen Kohlenstoffs vorgeschlagen (Pawelzik et al. 2013; Røyne et al. 2016), zumindest dann wenn die Fragestellung der Studie dies verlangt (JRC 2010). Allerdings besteht keine Einigung darüber, welche Methodik herangezogen werden soll, um die Effekte der Kohlenstoffspeicherung respektive der verzögerten Emissionen abzubilden (Røyne et al. 2016; Brandão et al. 2013; Cherubini et al. 2011; Levasseur et al. 2013).

Eine Kombination beider Faktoren, der Marktentwicklung sowie der zeitlichen Effekte, verdeutlicht eine weitere Schwachstelle der angewandten Methodik. In der Studie wurde davon ausgegangen, dass der CaReWood-Prozess direkt verfügbar ist. Übergangsphasen oder zukünftige Technologien wurden nicht berücksichtigt. Allerdings wird der CaReWood-Prozess - wenn überhaupt - erst in einigen Jahren etabliert werden. Bis dahin haben sich wiederum alternative Konzepte und technologische Entwicklungen ergeben. Insbesondere der Strom- und Wärmemix wird sich aufgrund der Energiewende in kurzer Zeit stark verändern. Aufgrund des hohen Einflusses des Energiemixes auf die Ergebnisse, wird eine Veränderung der Energieträger die Ergebnisse des Vergleichs entscheidend beeinflussen. In künftigen Forschungsprojekten wäre daher die Einbeziehung verschiedener zukünftiger Strom- und Wärmemixe interessant.

6.5 Schlussfolgerungen und Ausblick

Insgesamt zeigt die Studie, dass der CaReWood-Prozess eine ökologische Verwertung von Altholz darstellt, die sowohl gegenüber der Produktion der gleichen Produkte aus Frischholz als auch alternativen Verwertungsoptionen ökologische Vorteile hat. Wesentliche Einflussfaktoren auf die Umweltwirkungen des CaReWood-Systems sind die Klebstoffproduktion sowie die Verbrennung der kontaminierten Altholzbestandteile. Des Weiteren tragen sonstige Betriebsmittel, die für die Aufarbeitung des Altholzes benötigt werden, zu den Umweltwirkungen bei.

Für den Vergleich der Umweltwirkungen mit einem Referenzsystem wurde die Gutschriftmethode angewandt. Für die Prozesse im Gutschriftsystem wurde Brettschichtholz aus Frischholz sowie Wärme und Strom aus dem nationalen Versorgungsmix angenommen. Auf Basis dieses Vergleichs schneidet das Referenzsystem mit direkter Verbrennung in den meisten Umweltwirkungskategorien besser ab. Der wesentliche Vorteil des CaReWood-Systems im Vergleich zum Referenzsystem liegt in der Einsparung von Landfläche.

In einer Parameteranalyse wurde der Einfluss verschiedener Parameter auf die Umweltwirkungen des CaReWood-Systems analysiert. Dabei wurde festgestellt, dass die Ausbeute des CaReWood-Prozesses als Metaparameter den größten Einfluss auf die Umweltwirkungen des Gesamtsystems hat, während die Holzfeuchte als auch der Klebstoffbedarf deutlich geringeren Einfluss zeigen.

Die Studie bietet einen Eindruck von dem ökologischen Potenzial der stofflichen Vollholznutzung von Altholz. Mit der Arbeit wurde eine erste fundierte Sachbilanz für den CaReWood-Prozess zusammengestellt, obwohl dieser in der Praxis noch nicht existiert. Die Sachbilanzdaten können in weiteren Studien verwendet werden, um eine stoffliche Vollholznutzung von Altholz, beispielsweise in einem Kaskadensystem, repräsentativ abbilden zu können. In Zukunft müssen jedoch weitere technische Fragestellungen geklärt und die Verarbeitungsschritte detailliert ausgearbeitet werden. Anhand einer Pilotanlage können die Sachbilanzdaten dann aktualisiert und die Ökobilanzierung erneut durchgeführt werden.

Der Aufwand einer weiterführenden Bewertung der Umweltwirkungen mit komplexeren Methoden zur Berücksichtigung der Kohlenstoffspeicherung oder Marktverschiebungen steht in keinem Verhältnis zu der Qualität der Sachbilanzdaten und der Tatsache, dass sich der Prozess noch in der Entwicklungsphase befindet. Dies sollte im Rahmen von dedizierten Forschungsprojekten zur stofflichen Altholznutzung oder der Kaskadennutzung erfolgen, wenn die Folgen einer verstärkten stofflichen oder energetischen Nutzung von Altholz mit bestehenden oder ausgereiften Technologien bewertet werden sollen.

7 Ökonomische Bewertung des CaReWood-Prozesses

7.1 Material und Methoden

7.1.1 Modellierung des CaReWood-Systems

Die Modellierung des CaReWood-Systems folgt im Wesentlichen den Systemen aus der Ökobilanzierung. Das für die ökonomische Modellierung zugrunde gelegte Modell für den CaReWood-Prozess ist in Abbildung 12 dargestellt. Im Gegensatz zur Ökobilanzierung wurde die Kappsäge zum Entfernen von Holzfehlern als Prozess nicht eingeschlossen, da davon ausgegangen wurde, dass dies Teil des BSH-Herstellungsprozesses ist. Des Weiteren wurde der Transport zur Distribution des Brettschichtholzes weggelassen, da diese Kosten tendenziell von den Käufern getragen werden. Die Altholzaufbereitung für die Verbrennung, d. h. das Hacken und Abscheiden von Metallteilen in Sortiertrommeln wurden im Gegensatz zur Ökobilanzierung separat kalkuliert, da hierzu gesonderte Daten vorlagen. Das System beginnt mit dem Transport von 1 t Altholz. Die Ausbeute des CaReWood-Prozesses richtet sich nach den Werten aus dem Ökobilanzmodell und beläuft sich je nach Szenario auf 18%, 26% und 35%. Die verkauften Produkte umfassen Brettschichtholz, Strom und Wärme.

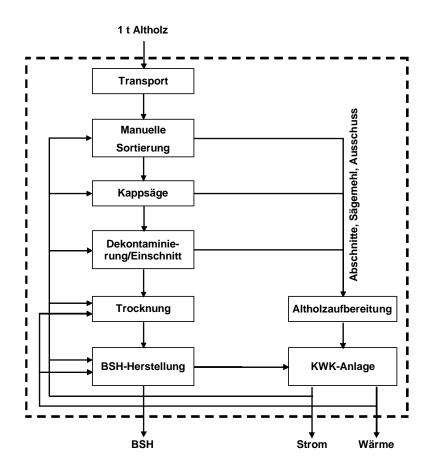


Abbildung 12 Systemgrenzen für die ökonomische Bewertung des CaReWood-Systems, bestehend aus dem CaReWood-Prozess und der Verbrennung der Nebenprodukte. BSH = Brettschichtholz; KWK = Kraft-Wärme-Kopplung.

7.1.1.1 Transport

Für den Transportprozess wurden die gleichen Transportdistanzen verwendet, wie sie bereits für die Ökobilanzierung in Abschnitt 6.2.1.1 und Tabelle 3 beschrieben wurden.

7.1.1.2 Manuelle Sortierung

Für die Bewertung der werkseigenen Sortierung wurde von einer manuellen Sortierung ausgegangen, wie es heute bei vielen Altholzverwertern noch üblich ist. In Zukunft könnte diese Arbeit durch vollautomatische Sortieranlagen mit Detektoren und Roboter-Greifarmen erfolgen. Da hierzu allerdings von den angefragten Unternehmen keine Kostendaten bereitgestellt wurden, wurde weiterhin die manuelle Sortierung unterstellt. Die Kosten umfassen im Wesentlichen die Lohnkosten sowie geringe Kosten für Kleingeräte und Verbrauchsmaterialien.

7.1.1.3 Trocknung

Der Trocknungsprozess repräsentiert die technische Trocknung der Altholzlamellen auf eine einheitliche Feuchte. Da sich die Daten in Tabelle 21 auf die Trocknung von Frischholz beziehen, wurden die Trocknungskosten für die Berechnungen des CaReWood-Prozesses um 20% reduziert. Es wurde davon ausgegangen, dass die Trocknungsdauer und damit der Verbrauch an Strom und Wärme zwar geringer sind als bei der Trocknung von Frischholz, der Be- und Entladeaufwand der Trocknungskammern allerdings unverändert bleibt. Merkliche Kosteneinsparungen würden somit erst auftreten, wenn die Trocknung vollständig entfallen würde, weil das Altholz mit Beginn des Abrisses vor Feuchtigkeit geschützt gelagert und transportiert worden wäre. Bei diesem Szenario ist jedoch zu bedenken, dass diese Veränderungen in der Logistikkette höhere Kosten in den jeweiligen Arbeitsschritten zur Folge hätten.

7.1.1.4 BSH-Herstellung

Die BSH-Herstellung repräsentiert die Produktion von BSH inkl. Keilzinkung, Flächenverleimung und den dazu notwendigen Säge- und Hobelprozessen. Das fertige Produkt entspricht BSH-Standardware (auch: Stangenware) in Sichtqualität. Die technische Fertigung von BSH aus Altholzlamellen wird als unverändert im Vergleich zur Verwendung von Frischholzlamellen angenommen.

7.1.1.5 Altholzaufbereitung für die Verbrennung

Die Daten für die Altholzaufbereitung umfassen das Hacken und Aussortieren von Fremdstoffen wie Metallen aus dem Hackgut über Sortiertrommeln und Siebe. Da sich die Produktionskosten in Tabelle 21 auf ungebrochenes Altholz der Kategorie AIII-AIV beziehen, wurde der Wert für den CaReWood Prozess um 40% reduziert. Dies folgt der Annahme, dass es sich bei 40% der Abschnitte aus dem CaReWood-Prozess um Sägemehl, Hobelspäne oder kleinteilige Abschnitte handelt, die für die Verbrennung kaum oder gar nicht gehackt werden müssen.

7.1.2 Modellierung des Referenzsystems: Verbrennung

Das für die ökonomische Modellierung zugrunde gelegte Modell für das Referenzsystem zur Verbrennung von Altholz in einer KWK-Anlage ist in Abbildung 13 dargestellt. Das Modell entspricht vollständig dem der Ökobilanz. Lediglich die Aufarbeitung des Altholzes durch Hacken und Sortieren wurde separat ausgewiesen. Das System beginnt mit dem Transport von 1 t Altholz. Die bereitgestellten und verkauften Produkte sind Strom und Wärme.

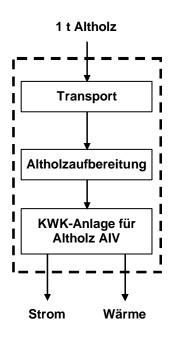


Abbildung 13 Systemgrenze für die Verbrennung von Altholz in einer KWK-Anlage für die ökonomische Bewertung.

7.1.2.1 Transport

Für den Transport des Altholzes von der Anfallstelle zur KWK-Anlage wurde wie in der Ökobilanzierung eine mittlere Transportdistanz von 75 km (Höglmeier et al. 2015) angenommen. Im Rahmen von verschiedenen Preisszenarien (siehe Abschnitt 7.1.5) wurden die in Tabelle 23 angegebenen Transportdistanzen berücksichtigt.

7.1.2.2 Altholzaufbereitung für die Verbrennung

Die Werte aus Tabelle 21 für die Aufbereitung des Altholzes für die Verbrennung wurde wie angegeben für die Berechnung verwendet. Eine Anpassung der Werte wie für das CaReWood-System erfolgte nicht.

7.1.3 Modellierung des Vergleichssystems: Produktion von BSH aus Frischholz

Zum Vergleich mit dem CaReWood-System wurde die Produktion von BSH aus Frischholz berechnet. Die Systemgrenzen für die Berechnung der Herstellung von BSH aus Frischholz sind in Abbildung 14 dargestellt. Aufgrund der vergleichsweise guten Datenbasis für die Produktion von BSH aus Frischholz, wurde die Herstellung ausgehend vom Einkauf der Schnittholzlamellen modelliert. Die Menge des produzierten Brettschichtholzes richtet sich nach der im CaReWood-System erzeugten Menge an BSH, um die Vergleichbarkeit beider Systeme hinsichtlich des Hauptproduktes (BSH) zu erreichen. Weitere Erlöse werden durch den Verkauf von Sägenebenprodukten erzielt.

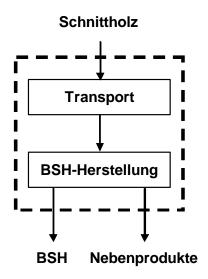


Abbildung 14 Systemgrenze für die ökonomische Bewertung der Produktion von Brettschichtholz (BSH) aus Frischholzlamellen.

7.1.3.1 Transport

Für den Transport des Schnittholzes wurde eine Transportdistanz von 827 km angenommen (Rüter and Diederichs 2012). Der Wert wurde für alle betrachteten Preisszenarien verwendet.

7.1.3.2 BSH-Herstellung

Der Prozess zur BSH-Herstellung umfasst das Keilzinken und Flächenverkleben sowie die dazugehörigen Säge- und Hobelprozesse. Es wurde angenommen, dass die bei der BSH-Produktion anfallenden Nebenprodukte verkauft werden.

7.1.4 Datenerhebung

Um die Produktionskosten für den CaReWood-Prozess ermitteln zu können, wurden Daten aus vergleichbaren Prozessen und Verarbeitungsschritten zusammengetragen und homogenisiert, um sie anschließend zu einem Gesamtprozess zusammenstellen zu können. Die Kostendaten wurden durch Befragung unterschiedlicher Industriebetriebe in Deutschland erhoben. Im Vordergrund stand die Erhebung der eigentlichen Produktionskosten, d. h. exklusive Verwaltung, Management, Steuern oder ähnlichem. Die Unternehmen wurden gebeten, die Kostendaten nach den folgenden Kostengruppen zu trennen, sofern möglich:

- Investitionskosten
- Produktions-/Verbrauchskosten (d. h. Schmieröle, Strom, etc.)
- Materialkosten (d. h. Ausgangsmaterial)
- Wartungskosten
- Lohnkosten

Ergänzende Daten zur Jahresproduktionsmenge, den Maschinenarbeitsstunden, den Jahresarbeitszeiten wurden ebenfalls abgefragt, um eine spätere Homogenisierung der Daten durchführen zu können. Des Weiteren wurden die Kosten bzw. Verkaufspreise für Rohmaterialien sowie die produzierten Haupt- und Nebenprodukte abgefragt.

Es wurden mehrere Brettschichtholzhersteller, Sägewerke, Biomassekraftwerke, Altholzsortierer sowie Hersteller für Sortier- und Holzverarbeitungsanlagen befragt. Zwar war die Bereitschaft vieler Unternehmen gegeben, das Forschungsvorhaben mit Daten zu unterstützen, allerdings nur unter der Auflage von Vertraulichkeitserklärungen. Exakte Daten, z. B. aus Rechnungen, wurden nur von wenigen Unternehmen für einzelne Verbrauchsposten bereitgestellt; Datenschutzaspekte und der mit dem Heraussuchen der Daten verbundene Aufwand waren für die befragten Unternehmen zu groß. Da weder ein Anlagenbauer noch ein holzverarbeitender Betrieb Mitglied des Projektkonsortiums gewesen ist, konnten keine primären Datensätze über eine Anlagenplanung für den CaReWood-Prozess generiert werden.

Der Umfang und die Qualität der bereitgestellten Daten ist sehr unterschiedlich. Während seitens der Anlagenhersteller genaue Investitionskosten für Einzelmaschinen bereitgestellt wurden, fehlen Daten zu den operativen Verbrauchs- oder Lohnkosten. Die Daten von produzierenden Unternehmen waren indes entweder präzise Kosten für einzelne Verbrauchsposten wie z. B. Klebstoffe, oder grobe Schätz- bzw. Kalkulationswerte je m³

erzeugtes Produkt. Im ersten Fall konnten die einzelnen Kosten nach Kostengruppen sortiert werden, es fehlten allerdings Kosten für einige Kostengruppen und Produktionseinheiten, wie z. B. für den Stromverbrauch oder den Personaleinsatz. Im zweiten Fall bestand keinerlei Kenntnis darüber, welche Kosten in den genannten Beträgen tatsächlich enthalten waren, d. h. welche Kostengruppen repräsentiert sind. Dies erschwerte die Beurteilung der Daten hinsichtlich ihrer Vollständigkeit und Repräsentativität. Von keinem Unternehmen wurden aus Datenschutzgründen die Gewinnmargen je Produkt genannt. Auch wenn dies mehr als nachvollziehbar ist, fehlte somit eine Vergleichsgröße, um die Plausibilität der Rohdaten sowie der eigenen Kalkulationen beurteilen zu können.

Aufgrund der Sensibilität der Daten werden weder Hinweise zu den beteiligten Unternehmen noch die Rohdaten im Detail veröffentlicht. Die Berechnung der präsentierten Daten erfolgte auf Basis der von den Unternehmen bereitgestellten Rohdaten und den dazugehörigen Metadaten wie der Durchsatzmenge oder der Jahresproduktion. Die Daten wurden anschließend auf eine gemeinsame Bezugsgröße umgerechnet. Fehlende Daten wurden über Annahmen basierend auf den vorhandenen und vergleichbaren Datensätzen oder Literaturwerten ergänzt. Sofern vorhanden, wurden die Rohdaten als auch die errechneten Daten anhand von Vergleichsdaten aus der Literatur auf Plausibilität überprüft. Allerdings ist der Vergleich mit den in der Literatur verfügbaren Daten aufgrund der unterschiedlichen und oftmals intransparenten Systemannahmen und Bezugsjahre schwierig.

7.1.4.1 Inventardaten

In Tabelle 21 sind die Produktionskosten für einzelne Arbeitsschritte zusammengefasst. Die Marktpreise für verschiedene in den Systemen verbrauchte oder erzeugte Produkte sind in Tabelle 22 dargestellt.

Die Daten für den Transport, die manuelle Sortierung, die Aufbereitung des Altholzes sowie die Trocknung beziehen sich auf die im Prozess verarbeitete Inputmenge. Die Daten für die Kappsäge, die Dekontaminierung, die BSH-Herstellung und die Verbrennung in der KWK-Anlage beziehen sich auf das erzeugte Produkt, also Brettschichtholz oder Energie.

Des Weiteren ist anzumerken, dass die Kostendaten ausschließlich die Produktionskosten, d. h. alle mit der Herstellung des Produkts verbundenen Kosten, repräsentieren. Dazu gehören sowohl Abschreibungen für Investitionskosten als auch die variablen Verbrauchskosten sowie

Lohnkosten. Zusätzliche Kosten für z. B. Management, Planung, Verwaltung, Steuern, oder betriebsinterne Infrastruktur sind in den Daten nicht enthalten. In Kombination mit den Marktpreisen, die wiederum alle genannten Zusatzkosten enthalten, berechnen sich sehr hohe Gewinne. Die in der Praxis realisierbaren Gewinne werden daher unter den hier präsentierten Werten liegen.

Zur Plausibilitätsprüfung der berechneten Daten können die Werte mit Literaturquellen verglichen werden. Vergleichswerte für die in der Tabelle 21 angegeben Produktionskosten finden sich unter anderem bei Klein (2014) und Ebner (2013).

Für Strom- und Fernwärmepreise finden sich Vergleichswerte bei Eurostat (2017), der Bundesnetzagentur (2017), der AGFW (2017) sowie Werner (2016).

Vergleichsdaten zu Stromerzeugungskosten in Altholzkraftwerken finden sich z.B. in Dürrschmidt et al. (2011).

Vergleichsdaten für Transportkosten finden sich bei Borcherding (2007), (PLANCO and BAFG 2007) und den Berichten aus dem DemoWood Projekt (FCBA 2010-2013).

Bei den Marktpreisen in Tabelle 22 wird von einer hohen Datenqualität ausgegangen. Dennoch können für einen Vergleich und zur Plausibilitätsprüfung die Preistabellen des Europäischen Wirtschaftsdienstes (EUWID) herangezogen werden.

Tabelle 21 Durchschnittlichen Kostendaten für einzelne Verarbeitungs- und Produktionsschritte (Stand: Frühjahr 2017). 1 = Der Wert enthält die Kosten für die Überwachung der Dekontamination mit Sensortechnologien (~5 ϵ /t). 2 = Werte beziehen sich auf die Trocknung von Frischholz.

	Preis	Einheit	Quellen
Transportkosten	0,05	€/m³ * km	Eigene Annahme basierend auf Literaturwerten
Transportdistanz (CaReWood)	68	km	Arbeitspaket 3
Transportdistanz (Verbrennung)	75	km	(Höglmeier et al. 2015)
Manuelle Sortierung	10	€/m³	Altholzverwerter
Altholzaufbereitung (z.B. Hacken)	14	€/m³	Altholzverwerter
Kappsäge	40	€/m³	Sägewerk, Anlagenbauer
Dekontaminierung/Einschnitt ¹	50	€/m³	Sägewerk, Anlagenbauer
Trocknung ²	30	€/m³	(Trübswetter 2009), Sägewerk, BSH-Hersteller
BSH-Herstellung	70	€/m³	BSH-Hersteller, Anlagenbauer
Verbrennung in KWK	0,013	€/MJ	Biomassekraftwerk

Tabelle 22 Marktpreise für die in den Systemen betrachteten Produkte und Rohmaterialien (Stand: Frühjahr 2017). Kosten für den Klebstoff sind in der BSH-Herstellung enthalten. 1 = Entsorgungskosten für den Erzeuger des Altholzes.

	Preis	Einheit	Quellen
Brettschichtholz (Stangenware)	400	€/m³	BSH-Hersteller
Altholz AIII-IV ¹	-39	€/m³	Altholzverwerter
Strom	0,2	€/kWh	Biomassekraftwerk
Fernwärme	0,08	€/kWh	Biomassekraftwerk
Leimbinderlamellen (getrocknet)	200	€/m³	BSH-Hersteller
Sägenebenprodukte	28	€/m³	BSH-Hersteller

7.1.5 Analysierte Szenarien

In Tabelle 21 und Tabelle 22 sind die für das Basisszenario zu Grunde gelegten Daten zusammengestellt. Um den Einfluss einzelner Systemparameter auf die Kosten, den Umsatz und Gewinn beurteilen zu können, wurden weitere Szenarien gerechnet. Die Szenarien umfassen Variationen für a) die Kosten und Marktpreise aus Tabelle 21 und Tabelle 22, b) die Ausbeute des CaReWood-Prozesses, c) den Altholzpreis und d) den Marktpreis des Brettschichtholzes aus dem CaReWood-Prozesse.

a) Die in Tabelle 21 und Tabelle 22 angegebenen Daten stellen die Mittelwerte für die Produktionskosten und Produkte dar, wie sie auf Basis der von den Unternehmen erhaltenen Rohdaten errechnet wurden. Wie in Abschnitt 7.1.4.1 geschildert, wird von einer hohen Unsicherheit der Daten ausgegangen. Um die Gefahr von Fehleinschätzungen zur ökonomischen Rentabilität des CaReWood-Systems zu reduzieren, wurden zwei ergänzende Extremszenarien berechnet (Tabelle 23). Die Werte für das beste und das schlechteste Preisszenario wurden mit einer relativen Abweichung von ±20% vom mittleren Preisszenario berechnet, um die hohe Unsicherheit in der Datenqualität zu kompensieren. Insbesondere das schlechte Preisszenario ist interessant, da es den Extremfall aus hohen Kosten und geringen Einnahmen abbildet und somit die geringste Wahrscheinlichkeit einer ökonomischen Rentabilität für das CaReWood-System aufweist. Tatsächlich liegen viele der Werte im schlechtesten Preisszenario über den von den Unternehmen bereitgestellten Daten für den jeweiligen Produktionsschritt. In allen Preisszenarien wurde mit einer Ausbeute des CaReWood-Prozesses von 26% gerechnet.

- Da die Datenunsicherheit für das CaReWood-System, das Referenzsystem und das Vergleichssystem gleichermaßen gilt, wurden die preisbezogenen Szenarien für alle Systeme berechnet.
- b) Ein weiterer Einflussfaktor auf die Rentabilität des CaReWood-Systems ist die Ausbeute des Prozesses. Folglich wurde der Einfluss der Ausbeute auf die Produktionskosten und den -gewinn analysiert. Neben einer Ausbeute von 26% im Basisszenario wurden zwei weitere Szenarien mit einer Ausbeute von 18% und 35% gerechnet (Tabelle 24). Die Werte sind identisch mit denen aus der Ökobilanzierung. Demnach sind auch die produzierten Outputs (BSH, Strom, Wärme) in beiden Bewertungsverfahren identisch.
- c) Ein weiterer wichtiger Einflussfaktor auf die Wirtschaftlichkeit des CaReWood-Systems ist der Marktpreis des Altholzes. Altholz wird als Rohstoff für die stoffliche Nutzung und als Brennstoff gehandelt. Im Jahresverlauf kann die Nachfrage nach Altholz in Kraftwerken stark schwanken und so den Marktpreis entsprechend beeinflussen. Im Basisszenario wurde ein Altholzpreis für AIII-AIV von -39 €/m³ (entspricht 100 €/t) angenommen (Stand: Mai 2017), wie in Tabelle 22 ersichtlich. Der Wert entspricht den Entsorgungskosten für den Erzeuger des Altholzes, was einer Einnahme für den Altholzverwerter entspricht. Tatsächlich handelt es sich dabei noch um eine konservative Annahme, da die Altholzpreise derzeit für AIII-AIV je nach Region bei 120 €/t liegen können. Der Altholzpreis gilt für Holz, das keinerlei Qualitätsanforderungen hinsichtlich Dimension oder Oberflächengüte erfüllen muss, da es ausschließlich für die Verbrennung vorgesehen ist. Soll das Altholz jedoch im CaReWood-Prozess stofflich verwertet werden, kann davon ausgegangen werden, dass ein CaReWood-Betreiber für eine höhere Qualität des Altholzes mehr bezahlen würde, um eine höhere Ausbeute zu erzielen. Das heißt im Umkehrschluss. dass z. B. beim Abriss bzw. Rückbau eines Gebäudes dimensionserhaltend und materialschonend gearbeitet wird. Die dadurch zusätzlich verursachten Kosten wurden in zwei Szenarien berücksichtigt (Tabelle 25). Zum einen wurde davon ausgegangen, dass eine CaReWood-Anlage das Altholz kostenlos übernimmt, d. h. dem Erzeuger keine Kosten für die eigentliche Entsorgung entstehen. Im dritten Szenario wurde ein Altholzpreis von 40 €/m³ angenommen, d. h. der CaReWood-Betreiber kauft dem Erzeuger des Altholzes das Material ab. In einem vierten Szenario wurde davon ausgegangen, dass für den Preis von 40 €/m³ eine höhere Qualität des Altholzes erwartet werden kann, was die Ausbeute des CaReWood-Prozesses erhöht. Anders ausgedrückt: Die Ausbeute von 35% kann nur erreicht werden, wenn die Qualität des Altholzes durch aufwendigere und kostenintensivere Rückbauverfahren gesteigert

- werden kann. Daher wurde in diesem vierten Szenario mit einer Ausbeute von 35% und einem Altholzpreis von 40 €/m³ gerechnet (Tabelle 25).
- d) Weitere Szenarien wurden unter Berücksichtigung alternativer Verkaufspreise für das im CaReWood-Prozess hergestellte Produkt berechnet. Grundsätzlich wird davon ausgegangen, dass es sich bei dem CaReWood-Produkt um Brettschichtholz, bzw. ein brettschichtholzähnliches Produkt handelt. Allerdings existieren weder der Prozess noch das Produkt, sodass das Produkt qualitativ und preislich schwer einzuordnen ist. Daher muss derzeit noch von einer geringeren Qualität (Oberflächengüte, Festigkeit, Dimension) des CaReWood-Produktes im Vergleich zu BSH aus Frischholz ausgegangen werden. Ferner ist schwierig abzuschätzen, ob Käufer tatsächlich denselben Preis für das CaReWood-Produkt zahlen würden. Zur Berücksichtigung beider Aspekte wurden die Szenarien aus a) mit einem Verkaufspreis auf dem Niveau von Konstruktionsvollholz (KVH) für das CaReWood-Produkt gerechnet (Tabelle 26). In diesen Szenarien wurde mit einer Ausbeute von 26% und einem Altholzpreis von -39 €/m³ gerechnet.

Tabelle 23 Parameterwerte zur Berechnung verschiedener Szenarien unter Berücksichtigung unterschiedlicher Produktionskosten und Marktpreise. ¹ = Der Wert enthält die Kosten für die Überwachung der Dekontamination mit Sensortechnologien (~5 €/t). ² = Werte beziehen sich auf die Trocknung von Frischholz. ³ = Werte entsprechen den Entsorgungskosten von Altholz für den Erzeuger.

Szenario	a_1	a_2	a_3	Einheit	Quelle für Szenarien
Transportkosten	-0,04	-0,05	-0,07	€/m³ * km	Eigene Berechnung ±20%
Transportdistanz (CaReWood)	29	68	167	km	Arbeitspaket 3
Transportdistanz (Verbrennung)	60	75	90	km	Eigene Berechnung ±20%
Manuelle Sortierung	-8	-10	-12	€/m³	Eigene Berechnung ±20%
Altholzaufbereitung (z.B. Hacken)	-11	-14	-17	€/m³	Eigene Berechnung ±20%
Kappsäge	-32	-40	-48	€/m³	Eigene Berechnung ±20%
Dekontaminierung/Einschnitt ¹	-40	-50	-60	€/m³	Eigene Berechnung ±20%
Trocknung ²	-24	-30	-36	€/m³	Eigene Berechnung ±20%
BSH-Herstellung	-56	-70	-84	€/m³	Eigene Berechnung ±20%
Verbrennung in CHP	-0,010	-0,013	-0,016	€/MJ	Eigene Berechnung ±20%
Brettschichtholz (Stangenware)	480	400	320	€/m³	Eigene Berechnung ±20%
Altholz AIII-IV ³	39	39	39	€/m³	Altholzverwerter
Strom	0,24	0,2	0,16	€/kWh	Eigene Berechnung ±20%
Fernwärme	0,10	0,08	0,06	€/kWh	Eigene Berechnung ±20%
Leimbinderlamellen (getrocknet)	180	200	220	€/m³	BSH-Hersteller, Eigene Annahmen
Sägenebenprodukte	34	28	22	€/m³	Eigene Berechnung ±20%

Tabelle 24 Parameterwerte zur Berechnung verschiedener Szenarien unter Berücksichtigung unterschiedlicher Ausbeuten des CaReWood-Prozesses.

Szenario	b_1	b_2	b_3	Einheit	Quelle
Ausbeute	18	26	35	%	Arbeitspaket 4, Eigene Berechnung

Tabelle 25 Parameterwerte zur Berechnung verschiedener Szenarien unter Berücksichtigung unterschiedlicher Preise für Altholz. ¹ = Werte entsprechen den Entsorgungskosten von Altholz für den Erzeuger.

Szenario	c_1	c_2	c_3	c_4	Einheit	Quelle
Ausbeute	26	26	26	35	%	Arbeitspaket 4, Eigene Berechnung
Altholzpreis AIII-IV ¹	39	0	-40	-40	€/m³	Eigene Annahme

Tabelle 26 Parameterwerte zur Berechnung verschiedener Szenarien unter Berücksichtigung verschiedener Preise für das CaReWood-Produkt.

Szenario	d_1	d_2	d_3	Einheit	Quelle
Preis für CaReWood-Produkt	320	300	280	€/m³	Eigene Annahmen, Eigene Berechnung ±20%

7.2 Ergebnisse

7.2.1.1 Basisszenario zur ökonomischen Bewertung des CaReWood-Systems unter Berücksichtigung verschiedener Preisszenarien

In Abbildung 15 sind die Produktionskosten, der Umsatz und der Gewinn für die in Tabelle 23 dargestellten Preisszenarien für das CaReWood-System und das Referenzsystem für die Verwertung von 1 t Altholz dargestellt. Im CaReWood-System wurde von einer mittleren Ausbeute von 26% ausgegangen, was einem Output von 0,663 m³ BSH entspricht. Der Altholzpreis in allen Szenarien beträgt -39 €/m³.

Für das CaReWood-System wurden Gesamtkosten von -213 €, -273 € und -343 € je verarbeiteter Tonne Altholz für das beste, mittlere und schlechteste Preisszenario berechnet. Der Umsatz durch den Verkauf des Brettschichtholzes, den Strom und die Wärme beläuft sich auf 582 €, 485 € und 388 € für die drei Szenarien. Der daraus errechnete Produktionsgewinn liegt bei 469 €, 314 € und 145 € pro verarbeiteter Tonne Altholz. In allen drei Szenarien macht das BSH 55% des Umsatzes aus, obwohl nur 26% des Inputmaterials in dem BSH verwertet werden. Ferner muss berücksichtigt werden, dass derzeit durch die Übernahme des Altholzes vom Erzeuger, Einnahmen in Höhe von 101 € pro Tonne Altholz erzielt werden. Diese Einnahmen sind allerdings nur mit der derzeitigen Lage auf dem Altholzmarkt

realisierbar, solange das zu Grunde gelegte AIII-AIV Holz eine untergeordnete Rolle als nachgefragter Rohstoff hat.

Wie zu erwarten korrelieren der Umsatz und Gewinn negativ mit den Produktionskosten. Für alle Szenarien im CaReWood-System und im Referenzsystem ist der Produktionsgewinn positiv. Obwohl die Umsätze im CaReWood-System aufgrund des hohen Marktpreises für BSH in allen Szenarien über dem Umsatz im Referenzsystem liegen, sind die Gewinne nahezu identisch, da die Produktionskosten im Referenzsystem wiederum etwas niedriger sind. Im direkten Vergleich beider Verwertungssysteme kann also kein eindeutig ökonomisch besseres System identifiziert werden. Letztlich ist dies auch nicht notwendig, denn solange ein System wirtschaftlich tragfähig ist und die Produkte nachgefragt werden, hat es seine ökonomische Berechtigung.

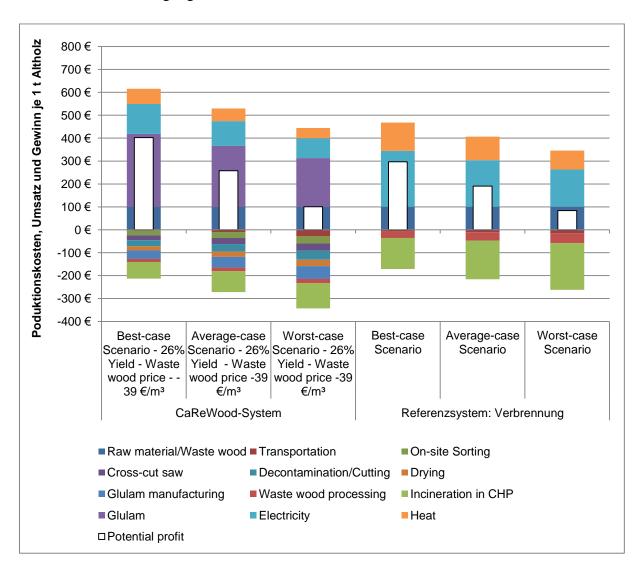


Abbildung 15 Produktionskosten, Umsatz und Gewinn für das CaReWood-System im Vergleich zum Referenzsystem für drei verschiedene Preisszenarien, bezogen auf die Verwertung von 1 t Altholz.

Die Zusammensetzung der Produktionskosten des CaReWood-Systems ohne Materialkosten sind in Abbildung 16 für das beste, mittlere und schlechteste Preisszenario von innen nach außen dargestellt. Die Verbrennung der Nebenprodukte und Abfälle inkl. Altholzaufbereitung trägt 38-42% zu den Gesamtkosten der Verarbeitung von 1 t Altholz bei. Die BSH-Fertigung hat einen Anteil von 15-18%, während der CaReWood-Prozess, d. h. die Sortierung, Dekontaminierung und der Einschnitt des Altholzes die übrigen 40% ausmacht. Aufgrund der unterschiedlichen Transportdistanzen in den drei Szenarien schwankt der Anteil der Transportkosten an den Gesamtkosten zwischen 2% und 8%.

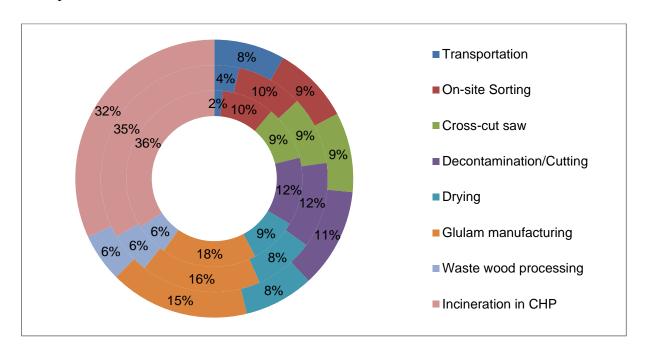


Abbildung 16 Produktionskosten (exkl. Kosten für Altholz) des CaReWood-Systems für das beste, mittlere und schlechteste Preisszenario (von innen nach außen).

7.2.1.2 Szenario zur ökonomischen Bewertung des CaReWood-Systems unter Berücksichtigung verschiedener Ausbeuten des CaReWood-Prozesses

In Abbildung 17 sind die Produktionskosten, der Umsatz sowie der Gewinn des CaReWood-Systems in Abhängigkeit verschiedener Ausbeuten des CaReWood-Prozesses abgebildet. Erwartungsgemäß steigen der Umsatz, aber auch die Kosten und der Gewinn mit zunehmender Ausbeute an. Der Beitrag des BSHs zum Umsatz nimmt von 42% (bei 18% Ausbeute) auf 68% (bei 35% Ausbeute) zu, während der Anteil an Strom und Wärme abnimmt. Analog steigen bei höherer Ausbeute die Produktionskosten an, da mehr Material in der stofflichen Verarbeitung bleibt, obwohl der Anteil an Verbrennungskosten abnimmt. Dass der Gewinn mit zunehmender Ausbeute ansteigt deutet auf eine höhere Gewinnmarge des

Brettschichtholzes im Vergleich zur energetischen Verwertung hin. Analog zum Anstieg der Ausbeute, steigt der Gewinn mit jedem Schritt um 9% an.

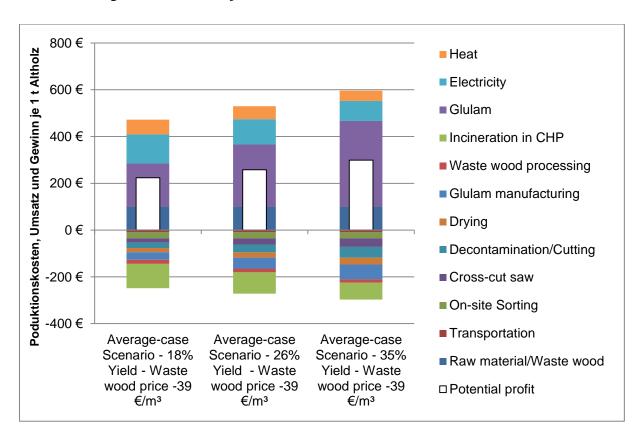


Abbildung 17 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Ausbeuten des CaReWood-Prozesses (18%, 26%, 35%), bezogen auf die Verwertung von 1 t Altholz.

7.2.1.3 Szenario zur ökonomischen Bewertung des CaReWood-Systems unter Berücksichtigung verschiedener Altholzpreise

In Abbildung 18 sind die Produktionskosten, der Umsatz sowie der Gewinn des CaReWood-Systems in Abhängigkeit verschiedener Altholzpreise für den Erzeuger des Altholzes dargestellt. Umsatz und Gewinn nehmen mit einem Anstieg des Altholzpreises für den CaReWood-Betrieb deutlich ab. Dennoch ist festzustellen, dass selbst bei einem Altholzpreis von 40 €/m³ ein Produktionsgewinn in Höhe von 110 € bzw. 139 € (bei 35% Ausbeute) erzielt werden kann. Dennoch hat der Altholzpreis einen entscheidenden Einfluss auf die Rentabilität des CaReWood-Systems. Aufgrund des hohen Altholzbedarfs für die Fertigung des CaReWood-Produktes reagiert die Bilanz des Systems sensibel auf Veränderungen des Altholzpreises.

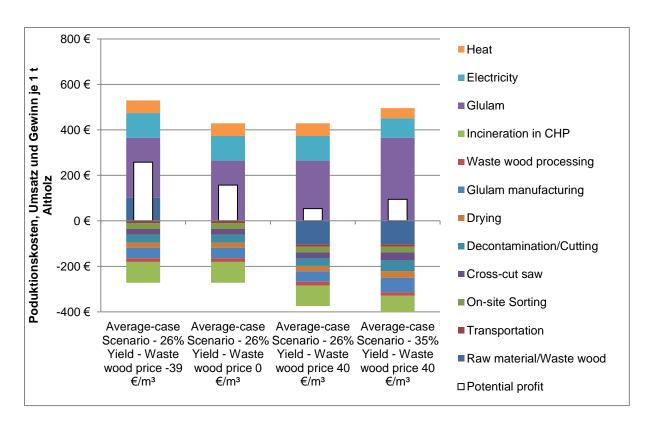


Abbildung 18 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Marktpreise für Altholz AIII-AIV, bezogen auf die Verwertung von 1 t Altholz.

7.2.1.4 Szenario zur ökonomischen Bewertung des CaReWood-Systems unter Berücksichtigung alternativer Marktpreise für das CaReWood-Produkt

In Abbildung 19 sind die Produktionskosten, der Umsatz und der Gewinn für das CaReWood-System für verschiedene Preisszenarien unter Berücksichtigung reduzierter Preise für das CaReWood-Produkt abgebildet. Trotz des Preisreduktionen gegenüber dem Basisszenario, kann ein positiver Produktionsgewinn von 363-119 ϵ je Tonne Altholz erwirtschaftet werden. Selbst beim Szenario mit den höchsten Produktionskosten und den niedrigsten Umsätzen, errechnet sich ein Gewinn von 119 ϵ . Allerdings ist für dieses Szenario anzumerken, dass der CaReWood-Prozess höhere Kosten verursacht (Transport bis einschl. BSH-Herstellung) als durch das BSH-Produkt umgesetzt wird (-214 ϵ im Vergleich zu 186 ϵ = -28 ϵ). In diesem Szenario sind also der Umsatz aus dem Energieverkauf und der Übernahme des Altholzes entscheidend für den Gewinn.

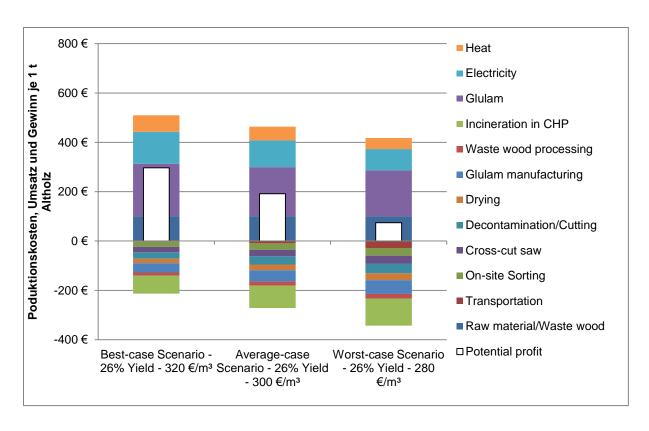


Abbildung 19 Produktionskosten, Umsatz und Gewinn für das CaReWood-System unter Berücksichtigung verschiedener Marktpreise für das CaReWood-Produkt (320 €/m³, 300 €/m³, 280 €/m³), bezogen auf die Verwertung von 1 t Altholz.

7.2.1.5 Szenario zur ökonomischen Bewertung des CaReWood-Systems im Vergleich zur Herstellung von Brettschichtholz aus Frischholzlamellen

In Abbildung 20 sind die Produktionskosten, der Umsatz sowie der Produktionsgewinn für die Verwertung von 1 t Altholz im CaReWood-System im Vergleich zur Produktion von 0,663 m³ Brettschichtholz aus Frischholzlamellen abgebildet. Die Produktionsmenge von 0,663 m³ entspricht der Ausbeute im CaReWood-System von 26% aus 1 t Altholz. Besonders auffällig ist der deutlich niedrigere Gewinn im Vergleichssystem, gegenüber dem Gewinn im CaReWood-System. Dies hat im Wesentlichen zwei Gründe. Zur Produktion des BSH aus Frischholz müssen Schnittholzlamellen zu Preisen von 180-220 €/m³ eingekauft werden, während im CaReWood-System das Altholz gegen eine Zuzahlung von 39 €/m³ bereitgestellt wird. Anders ausgedrückt: Im CaReWood-System trägt das Rohmaterial mit 17% zum Umsatz bei, während im Vergleichssystem das Rohmaterial 70% zu den Gesamtkosten beiträgt. Zweitens wird im CaReWood-System durch den Verkauf der produzierten Energie ein deutlich größerer Gewinn erwirtschaftet als im Vergleichssystem durch den Verkauf der Nebenprodukte generiert wird. Dies ist in erster Linie auf den deutlichen höheren Input im CaReWood-System zurückzuführen, der für die Produktion des Brettschichtholzes aufgrund

der niedrigen Ausbeute notwendig ist. Solange mit der Verarbeitung von Altholz Umsätze generiert werden können, ist die geringe Ausbeute im Vergleich zum Vergleichssystem somit vorteilhaft für das CaReWood-System. Erst wenn für das Altholz bezahlt werden muss, wendet sich der hohe Altholzbedarf in einen Nachteil (vgl. Abschnitt 7.2.1.3).

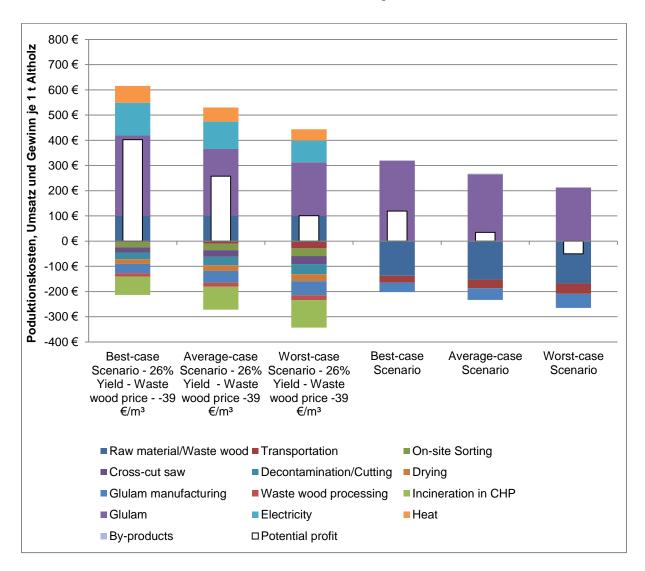


Abbildung 20 Produktionskosten, Umsatz und Gewinn für das CaReWood-System und dem Vergleichssystem, Brettschichtholz aus Frischholzlamellen für drei verschiedene Preisszenarien, bezogen auf die Verwertung von 1 t Altholz bzw. die Produktion von 0,651 m³ Brettschichtholz.

7.2.1.6 Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt sowie dem erzielten Gewinn

In Abbildung 21 ist der Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt sowie dem damit erzielbaren Gewinn bei der Verarbeitung von 1 t Altholz abgebildet. Die Abbildung bezieht sich auf das mittlere Preisszenario und eine Ausbeute des CaReWood-Prozesses von 26%. Die Abbildungen für das beste und

schlechteste Preisszenario finden sich im Anhang in Abbildung 28 und Abbildung 29. Für den Marktpreis des CaReWood-Produktes wurden Werte zwischen 100 €/m³ und 450 €/m³ angenommen. Für den Altholzpreis lagen die Werte zwischen 50 €/m³ und -100 €/m³ (bezogen auf den Erzeuger des Altholzes).

Die Gewinnschwelle liegt zwischen Preiskombinationen von 80 €/m³ & 0 €/m³ und 470 €/m³ & -100 €/m³ (Produktpreis & Altholzpreis). Das bedeutet, dass bei einem Verkaufspreis von 80 €/m³ für das CaReWood-Produkt das Altholz maximal ohne Zuzahlung angenommen werden kann, um kostenneutral produzieren zu können. Alternativ kann bei einem Verkaufspreis von 470 €/m³ ein Betrag von 100 €/m³ für den Einkauf des Altholzes bezahlt werden. Es ist wichtig zu berücksichtigen, dass in der genannten Kombination der Herstellungsprozess für BSH selbst nicht wirtschaftlich ist, sondern durch den Verkauf der Energie kompensiert wird.

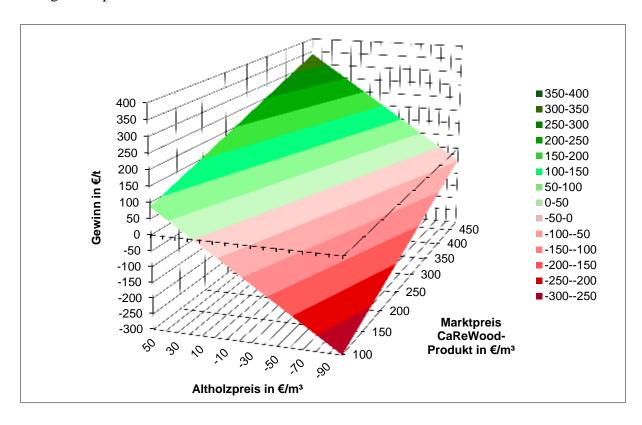


Abbildung 21 Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt (jeweils in €/m³) und dem erzielten Gewinn je verarbeiteter Tonne Altholz, basierend auf dem mittleren Preisszenario und einer Ausbeute von 26% im CaReWood-Prozess. Der Altholzpreis bezieht sich auf die Entsorgungskosten für den Erzeuger. Die farblich differenzierte Wertespanne bezieht sich auf den Gewinn.

7.2.1.7 Alternative Quantifizierung des Kostenrahmens für den CaReWood-Prozess

Die hohe Datenunsicherheit, die mit der Abschätzung der Produktionskosten des CaReWood-Prozesses verbunden ist, hat einen großen Einfluss auf die Ergebnisse in den Szenarien. Aus diesem Grund wurde ein alternativer Bewertungsansatz gewählt, bei dem nicht die tatsächlichen Kosten ermittelt werden, sondern nur ein Kostenrahmen, in dem die Produktionskosten liegen müssen, um den Prozess wirtschaftlich durchführen zu können. Die Berechnung basiert auf dem Vergleich mit der Fertigung von Brettschichtholz aus Frischholz, für den eine verlässliche Datengrundlage zur Verfügung steht.

Als Bezugsgröße dient 1 m³ getrockneter Schnittholzlamellen, wie sie für die Fertigung von BSH eingesetzt werden. Diese Bezugsgröße wurde aus zwei Gründen gewählt: Erstens sind die Kosten für Schnittholz bekannt und gut nachvollziehbar. Zweitens ist die Aufarbeitung des Altholzes zu Lamellen, also der eigentlich CaReWood-Prozess, das neuartige Verfahren und nicht die Fertigung von BSH. Denn die anschließende BSH-Fertigung ist für Alt- und Frischholzlamellen identisch, unabhängig davon, ob die Fertigung von BSH aus Altholz teuer ist oder nicht. Aus diesem Grund wurde im Basisszenario zunächst davon ausgegangen, dass sowohl die Fertigungskosten als auch der Verkaufspreis von Brettschichtholz aus Altholzlamellen identisch mit jenen für Frischholzlamellen ist. Des Weiteren wurde zu Grunde gelegt, dass die Schnittholzlamellen für BSH aus Frischholz 220 €/m³ kosten. Nun kann davon ausgegangen werden, dass unter den genannten Bedingungen (identische BSH-Fertigung) die Fertigung von BSH aus Altholz wirtschaftlich tragfähig ist, solange die Produktion der Altholzlamellen (bis einschl. Trocknung) nicht teurer als 220 €/m³ ist.

An dieser Stelle ist es wichtig anzumerken, dass die 220 € gleichzeitig eine Art Grenze für ein realistisches Vergleichsprodukt markieren. Das bedeutet, dass die Kosten für den CaReWood-Prozess natürlich über den 220 € (plus einem möglichen Umsatz durch die Altholzannahme) liegen können. Für die gleiche Wirtschaftlichkeit setzt dies allerdings voraus, dass das BSH aus Altholz zu einem höheren Preis verkauft werden muss (oder günstiger produziert werden muss) als das BSH, das aus Lamellen mit einem Einkaufspreis von 220 € gewinnbringend gefertigt werden kann. Auch wenn dies praktisch möglich wäre, wird es als sehr unwahrscheinlich angesehen, dass das CaReWood-Produkt zu einem höheren Preis verkauft (oder günstiger produziert) werden kann als BSH aus Frischholz.

Während die Kosten für den CaReWood-Prozess unbekannt sind, sind zumindest die Kosten für das Rohmaterial, das Altholz, gut belegt. Je nach Altholzpreis vergrößern oder verkleinern

sie den Kostenrahmen, in dem die Produktionskosten liegen müssen. Für die Produktion von 1 m³ Altholzlamellen, der Bezugsgröße, werden 2,68 m³ Altholz benötigt. Für den CaReWood-Prozess bedeutet dies bei einem Altholzpreis von -39 €/m³ (gilt für den Erzeuger des Altholzes, Stand: Mai 2017) einen Umsatz von 104 €. Demnach vergrößert sich der Kostenrahmen für die Fertigung der Altholzlamellen auf 324 € (220 € + 104 €). Liegen die Aufarbeitungskosten bei 324 €, ist der Gewinn durch den Verkauf des BSH identisch zu dem Gewinn für BSH aus Frischholz; vorausgesetzt, die Fertigungskosten und der Verkaufspreis sind identisch. Liegen die Produktionskosten für den CaReWood-Prozess unter den 324 €, stellt die Differenz einen zusätzlichen Gewinn dar. In Abhängigkeit des Altholzpreises können weitere Kostenrahmen für den CaReWood-Prozess berechnet werden. Bei einem Altholzpreis von 0 €/m³ errechnet sich ein Kostenrahmen von 220 €. Bei einem Altholzpreis von -40 €/m³ errechnet sich ein Kostenrahmen von 113 € (blaue Fläche in Abbildung 22).

Im Gegensatz zum beschriebenen Basisszenario muss allerdings davon ausgegangen werden, dass das BSH aus Altholz nicht für den gleichen Preis verkauft werden kann wie BSH aus Frischholz. Des Weiteren kann angenommen werden, dass der Fertigungsprozess für BSH aus Altholz aufgrund kürzerer und kleindimensionierter Lamellen teurer ist als für BSH aus Frischholzlamellen (höherer Hobelaufwand, höherer Klebstoffverbrauch durch Keilzinkung und Flächenlaminierung je m³ aufgrund dünnerer Lamellen). Beide Fälle – ein niedrigerer Verkaufspreis bzw. höhere Fertigungskosten – wurden in zwei weiteren Szenarien berücksichtigt (rote und grüne Fläche in Abbildung 22). Im ersten Szenario wurde der Kostenrahmen um $100 \, \text{\color form} \, \text{\color form} \, \text{\color fläche} \, \text{\color$

Für die in Abbildung 22 dargestellten Kostenrahmen muss angemerkt werden, dass Produktionskosten z. B. zwischen 0 und 50 €/m³ nicht realistisch sind. Somit bieten die Flächen zwar Orientierung, wichtiger können jedoch die Maximalwerte sein, da sie die Obergrenze für die Produktionskosten markieren, für die der Prozess gerade noch gewinnbringend ist. Des Weiteren ist es wichtig anzumerken, dass es sich bei den Produktionskosten ausschließlich um die Kosten von Transport bis einschließlich Trocknung

der Altholzlamellen handelt. Ein Vergleich mit den berechneten Produktionskosten in den zuvor dargestellten Szenariorechnungen ist daher nicht möglich.

Ein Schwachpunkt dieser Betrachtung ist die vollständige Allokation des Altholzpreises auf die Produktion von Brettschichtholz ohne anteilige Berücksichtigung der Altholzverbrennung. Dadurch wird der Kostenrahmen für den CaReWood-Prozess im Verhältnis zum Verbrennungsteil bei einem negativen Altholzpreis unverhältnismäßig vergrößert, während er bei einem negativen Altholzpreis übermäßig verkleinert wird. Andererseits wird auf diese Weise garantiert, dass die Fertigung von BSH im CaReWood-System an sich wirtschaftlich ist. Dadurch wird verhindert, dass die Produktionskosten für das BSH höher sind als der erzielbare Umsatz, was die dann notwendige Kompensation durch den Energieverkauf vermeidet.

Aus der Abbildung ist ersichtlich, dass das System stärker auf die Veränderung des Altholzpreises reagiert als auf eine Veränderung der BSH-Fertigungskosten/des Verkaufspreises. Die Obergrenze für die Produktionskosten verschiebt sich bei einer Abnahme des Altholzpreises von 80 €/m³ um 211 € nach unten. Bei der Reduktion der BSH-Fertigungskosten um 200 €/m³ sinkt die Obergrenze um lediglich 137 €. Dieser Unterschied ist auf die jeweilige Ausbeute zurückzuführen. Eine Veränderung des Altholzpreises wirkt sich über eine Inputmenge von 2,68 m³ Altholz aus, die für die Fertigung von 1 m³ Lamellen notwendig ist. Im Referenz-BSH-Prozess ist die Ausbeute deutlich höher, sodass die Reduktion des Verkaufspreises bzw. die Erhöhung der Fertigungskosten deutlich geringere Auswirkungen auf den Kostenrahmen hat.

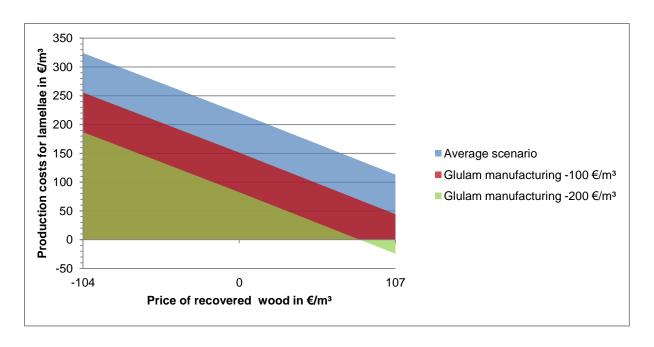


Abbildung 22 Potentielle Kostenrahmen für den CaReWood-Prozess (Transport bis einschl. Trocknung) ohne Verbrennung in Abhängigkeit des Altholzpreises und des Preises für Schnittholz. Für alle Produktionskosten innerhalb der markierten Flächen oberhalb der Nulllinie ist der CaReWood-Prozess kostenneutral oder gewinnbringend.

7.2.1.8 Anlagengröße und Investitionsvolumen für eine CaReWood-Anlage

Ausgehend von den Unternehmensdaten wurden die Investitionskosten für eine Anlage mit einer Jahresproduktionsmenge von 10000 m³/a Brettschichtholz kalkuliert. Bei einer Ausbeute von 26% für den CaReWood-Prozess, entspricht der Jahresoutput einem Altholzbedarf von etwa 42000 m³/a. Das in der Verbrennung entsorgte Altholz hat demnach ein Volumen von 32000 m³/a, was bei einer Holzfeuchte von u = 22% etwa 15000 t/a entspricht. Für das Altholz kann bei einer Holzfeuchte von u = 22%ein unterer Heizwert von Hu_w = 4,24 kWh/kg angenommen werden. Ausgehend von einer Betriebszeit von 7000 h/a, lässt sich diesen Werten eine erforderliche Feuerungsleistung aus KWK-Verbrennungsanlage von etwa 10 MW berechnen. Die Investitionskosten für eine Anlage mit dieser Feuerungsleistung werden mit etwa 10-14 Mio. € angegeben.

Für ein Brettschichtholzwerk mit einem Jahresoutput 10000 m³/a werden von Investitionskosten von 4 Mio. € veranschlagt. Für die zusätzlich notwendigen Anlagen für den CaReWood-Prozess werden weitere 3-4 Mio. € angenommen. Der Wert basiert auf Angaben Unternehmen den Bereichen Anlagenbau, Altholzaufbereitung von aus und Sortieranlagenbau.

Insgesamt würde sich die Investitionssumme somit auf etwa 17-22 Mio. € belaufen.

7.3 Diskussion und Schlussfolgerungen

Die Szenarien weisen auf ein hohes ökonomisches Potential für das CaReWood-System hin. In allen berechneten Szenarien kann für die zu Grunde gelegten Bedingungen ein positiver Produktionsgewinn erzielt werden. Selbst bei den schlechtesten Preisszenarien ist die Kombination aus stofflicher und energetischer Verwertung des Altholzes im CaReWood-System ökonomisch tragfähig, auch wenn die BSH-Fertigung in Einzelfällen selbst nicht wirtschaftlich ist. Auch bei einem drastischen Anstieg des Altholzpreises kann das CaReWood-System wirtschaftlich durchgeführt werden. Obwohl die Berechnungen basierend auf einer unsicheren Datenbasis erstellt wurden, stehen die Ergebnisse in einem deutlichen Wiederspruch gegenüber den Bedenken seitens industrieller Stakeholder, wie sie in den Umfragen in Arbeitspaket 5 geäußert wurden (siehe Abschnitt 5.4).

Im Vergleich zur Verwertung des Altholzes in der derzeit üblichen Verbrennung kann das CaReWood-System trotz der höheren Produktionskosten einen Gewinn in ähnlicher Größenordnung erzielen. Dabei ist zu berücksichtigen, dass im CaReWood-System sowohl das CaReWood-Produkt als auch Strom und Wärme produziert werden, die zusammen den Gesamtgewinn ausmachen.

Im Vergleich zur Produktion von Brettschichtholz aus Frischholzlamellen liegt der wesentliche Vorteil des CaReWood-Systems in den deutlich niedrigeren Materialkosten. Durch die Zuzahlung zur Übernahme des Altholzes können im CaReWood-System zusätzliche Einnahmen generiert werden. während im Vergleichssystem das Ausgangsmaterial eingekauft werden muss. Da Rohmaterial (Rundholz, Schnittholzlamellen) sowohl im Sägewerk als auch beim BSH-Hersteller 50-70% der gesamten Produktionskosten ausmachen kann (Ebner 2013; Binder 2002; Seintsch 2011; Schulte et al. 2003), bietet sich hier im Vergleich das größte Einsparpotential. Da Altholz derzeit entweder gegen Bezahlung oder für vergleichsweise niedrige Handelspreise in der stofflichen Nutzung für 15-30 €/t gehandelt wird, ist die Spannbreite für die notwendigen Aufwendungen des CaReWood-Prozesses hoch.

Den präsentierten Ergebnissen liegt die Annahme zu Grunde, dass das Brettschichtholz aus Altholz die gleiche Qualität aufweist wie Brettschichtholz aus Frischholzlamellen. Da zumindest nach derzeitigem Stand das CaReWood-Produkt nicht die gleichen Anforderungen an Brettschichtholz erfüllen wird, sondern ein eigenständiges Produkt darstellen wird, muss von einem deutlich niedrigeren Verkaufspreis ausgegangen werden. Doch selbst bei einem

Verkaufspreis von 200 €/m³ kann mit einem derzeitigen Altholzpreis selbst im schlechtesten Preisszenario ein Produktionsgewinn von ca. 100 € erwirtschaftet werden. Das heißt, dass trotz des geringeren Verkaufspreises der Prozess wirtschaftlich tragfähig sein kann.

Die Wirtschaftlichkeit des CaReWood-Systems wird maßgeblich von den Produktionskosten, dem Altholzpreis und dem Verkaufspreis beeinflusst. Die Produktionskosten können in der Praxis durch vollautomatische Fertigungssysteme jedoch nur auf ein Minimum reduziert werden. Die wesentlichen Einflussfaktoren werden daher die Kosten für das Rohmaterial und der Verkaufspreis für das fertige Produkt sein, ähnlich wie es heute bereits für Brettschichtholz und Sägewerksprodukte der Fall ist. Es ist davon auszugehen, dass insbesondere der Altholzpreis entscheidend sein wird, da durch eine Förderung der Kaskadennutzung von Holz im Rahmen der Bioökonomie die Nachfrage nach Altholz voraussichtlich ansteigen wird. Dies wird zur Folge haben, dass auch Altholz AIII-AIV nachgefragt werden wird, wie es bereits heute für die stofflich genutzten Altholzklassen AI-AII der Fall ist. Hinsichtlich des Marktpreises ist derzeit kaum abzusehen, ob und wie sich das CaReWood-Produkt auf dem Markt positionieren wird. Sicher ist allerdings, dass eine langfristige Marktetablierung und ein hoher Verkaufspreis nur über eine hohe und konstante Produktqualität und ein breites Anwendungsspektrum erreicht werden kann.

In allen Szenarien wurde davon ausgegangen, dass die produzierte Wärme vollständig als Fernwärme vergütet wird. In der Praxis wird allerdings nur ein Teil der Wärme verkauft. Insbesondere im Sommerhalbjahr ist der Verbrauch von Wärme deutlich reduziert, da insbesondere private Haushalte kaum Wärme nachfragen. Leider liegen keine Informationen zur tatsächlichen Verkaufsquote der erzeugten Wärme von KWK-Anlagen vor. Bei einer Anpassung der Verkaufsquote würde das CaReWood-System anders reagieren als das Referenzsystem, aufgrund des unterschiedlichen Anteils an erzeugter Wärme. Denn je höher die Menge an erzeugter Wärme, desto stärker ist das System von einer Reduktion der Verkaufsquote betroffen. Im mittleren Preisszenario des CaReWood-Systems reduziert sich der Gewinn um ca. 20%, wenn nur die Hälfte der erzeugten Wärme verkauft wird. Im Vergleich reduziert sich der Gewinn des mittleren Preisszenarios des Referenzsystems um 35%. Das bedeutet, dass das CaReWood-System weniger abhängig ist von dem Verkauf der Wärme als das Referenzsystem. Erst wenn die Produktion des Brettschichtholzes im CaReWood-System selbst nicht mehr tragfähig ist, muss der Verkauf von Strom und Wärme die Verluste kompensieren. Aufgrund dieses größeren Produktportfolios ist das CaReWood-System daher robuster gegenüber Preis- und Nachfrageveränderungen.

Die Investitionskosten für eine CaReWood-Anlage mit einem jährlichen Output von 10000 m³ Brettschichtholz wurden auf etwa 20 Mio. € geschätzt. Mehr als die Hälfte des Betrags stammt von den Aufwendungen für die Verbrennungsanlage. Die Summe liegt damit deutlich über Investitionskosten für Brettschichtholzwerke oder Sägewerke mit ähnlichem Jahresoutput, was in erster Linie auf die Zusatzkosten für die Altholzaufbereitung und Verbrennung zurückzuführen ist. So gesehen handelt es sich um zwei Investitionsobjekte, den CaReWood-Prozess mit der Altholzaufbereitung und Herstellung des Brettschichtholzes, sowie der Altholzverbrennung und damit der Bereitstellung von Energie. Zur Kalkulation wurden beide Objekte zusammengefasst, obwohl der CaReWood-Prozess allein ebenso berechnet werden könnte. Es wurde jedoch davon ausgegangen, dass sich dann die notwendige Weitergabe der Altholzabfälle aufgrund des zusätzlichen Transport- und Verwaltungsaufwands nicht oder weniger wirtschaftlich gestalten ließe. Aus diesem Grund und der Höhe der Investitionssumme scheint die CaReWood-Anlage keine Investition für einen neuen Marktteilnehmer, sondern eine Option zur Erweiterung des Verarbeitungs- und Produktportfolios bestehender Akteure.

Hierbei könnte es um Unternehmen handeln, die bereits Erfahrung im Altholzmanagement, der stofflichen und energetischen Verwertung oder der Produktion von Brettschichtholz Insbesondere Spanplattenhersteller verfügen oftmals über eine Altholzlogistik und -aufarbeitung. Für die Entsorgung des Altholzes der Klassen AIII-AIV stehen die notwendigen Verbrennungsanlagen zur Verfügung. Des Weiteren finden sich in manchen Unternehmensgruppen auch Brettschichtholzwerke, sodass eine unternehmensübergreifende Grundstruktur für den CaReWood-Prozess gegeben wäre. Beim Bestehen dieser Strukturen können sich die Investitionskosten auf 7-10 Mio. € reduzieren. Für diese Unternehmen könnte sich das Produktportfolio somit noch erweitern.

7.3.1 Kritische Einschätzung der Ergebnisse

Der CaReWood-Prozess ist auch nach dreijähriger Forschungsarbeit nach wie vor ein theoretisches Konzept zur Aufarbeitung von großformatigem Altholz für eine erneute Verwendung in Vollholzanwendungen. Es besteht weder eine Pilotanlage noch ein detailliert ausgearbeiteter Anlagenplan, auf deren Basis eine ökonomische Bewertung durchgeführt werden könnte. Dafür sind weiterhin zu viele Fragen zur technischen Umsetzbarkeit ungeklärt, die in weiterer Forschungsarbeit beantwortet werden müssen. Dies macht eine

verlässliche Bewertung der Produktions- und Investitionskosten per se schwierig, selbst wenn die dafür notwendigen Daten vorhanden wären. Doch die Kosten für die jeweils notwendigen Verarbeitungsschritte sind weder über Literatur noch über Datenbanken verfügbar. Hier kann ausschließlich über eine enge Kooperation mit Industriepartnern die notwendige Datengrundlage verdichtet und zusammengestellt werden.

In diesem Forschungsvorhaben wurden verschiedene Unternehmen aus der holzverarbeitenden Industrie nach ihren Produktionskosten befragt. Wie eingangs bereits geschildert, ist die Bereitschaft zur Kooperation grundsätzlich gegeben. Allerdings handelt es sich bei Kostendaten um sensible Informationen, die verständlicherweise ungern an Dritte weitergegeben werden, insbesondere wenn es keine direkte Gegenleistung gibt. Ferner können oder wollen die meisten Unternehmen nur allgemeine Produktionskosten nennen, die sich nur schwer auf einzelne Arbeitsschritte umlegen lassen. Aus diesem Grund erscheinen die Produktionskosten für die Fertigung von Brettschichtholz relativ plausibel, lassen Veränderungen beispielsweise hinsichtlich des allerdings keine Stromoder Klebstoffverbrauchs zu, da die Daten für einzelne Arbeitsschritte nicht bekannt sind. Für die Zusammenstellung der Produktionskosten für den CaReWood-Prozess werden jedoch Produktionskosten für einzelne Arbeitsschritte notwendig, wie zum Beispiel für Säge- oder Hobelprozesse, Sortier- und Analyseverfahren. Derart detailliert aufgeschlüsselte Daten sind selbst bei den Unternehmen nur selten bekannt, oder wollen aufgrund des hohen Aufwands nicht ermittelt oder weitergegeben werden. Insgesamt bleiben daher relativ ungenaue Angaben und grobe Schätzungen, mit denen die Berechnungen durchgeführt wurden.

Auch wenn über die extremen Preisszenarien eine große Bandbreite für die Produktionskosten abgebildet wurde, können die präsentierten Ergebnisse nur eine grobe Orientierung zur Einschätzung der Produktionskosten liefern. Interessanter sind die Ergebnisse zu den relevanten Kostentreibern und Einflussfaktoren, zum Beispiel zur Bedeutung des Altholzpreises für die Wirtschaftlichkeit des Prozesses. Bevor tatsächlich verlässliche Ergebnisse über die Wirtschaftlichkeit des CaReWood-Prozesses getroffen werden können, müssen weitere Fragen zur technischen Umsetzung oder zur Verwendungsmöglichkeit des Produktes geklärt werden. In einem weiteren Schritt kann dann gemeinsam mit Anlagenbauern und Unternehmern eine Kosten-Nutzen-Analyse ausgearbeitet werden.

8 Bewertung der Ressourceneffizienz der Kaskadennutzung von Holz

In Anlehnung an die Projektziele wurde in Abstimmung mit Arbeitspaket 5 eine Bewertung der Ressourceneffizienz der Kaskadennutzung von Holz durchgeführt. Die Ergebnisse wurden in einer Publikation von Risse et al. (2017) zusammengestellt. Die Publikation ist zur Veröffentlichung angenommen worden. Eine kurze Zusammenfassung der Ergebnisse erfolgt hier. Für weitere Informationen wird auf die Publikation verwiesen.

8.1 Hintergrund

Neben einer Reduktion der Umweltwirkungen wird eine Steigerung der Ressourceneffizienz der Holznutzung als Ziel der Kaskadennutzung formuliert (z. B. Thonemann and Schumann 2016; Essel and Carus 2014; Keegan et al. 2013; Arnold et al. 2009; Fraanje 1997; Sirkin and Houten 1994). Auch in politischen Programmen wird die Kaskadennutzung von Holz als Option zur Steigerung der Ressourceneffizienz erwähnt (BMUB 2015; EC 2014, 2011). Bisherige Studien zur Kaskadennutzung fokussierten jedoch überwiegend auf die Umweltwirkungen als auf die Effizienz der Holz- bzw. Ressourcennutzung. Aus diesem Grund wird im Folgenden ein Ansatz zur Bewertung der Ressourceneffizienz von Holzkaskaden erarbeitet und in einer exemplarischen Fallstudie angewandt.

Im Rahmen dieser Arbeit umfasst der Begriff Ressourcen alle primären natürlichen Ressourcen wie Wasser, abiotische erneuerbare Ressourcen (z. B. Wind), fossile Energieträger, Mineralien, Erze, nukleare Ressourcen, Landfläche und atmosphärische Ressourcen. Rohstoffe aus Recyclingprozessen werden als sekundäre Ressourcen bezeichnet. Da sich diese Arbeit auf Holz aus bewirtschafteten Wäldern bezieht, wird das Holz nicht als primäre Ressource sondern als Produkt wirtschaftlicher Tätigkeit definiert.

Ressourceneffizienz wird als das Verhältnis zwischen dem produzierten Output und den für die Produktion notwendigen Inputflüssen definiert. Die Ressourceneffizienz kann auf verschiedenen Ebenen, d. h. auf Prozessebene (hier: Sub-System) oder auf Lebenszyklusebene bewertet werden (Huysman et al. 2015).

8.2 Material und Methoden

Im Gegensatz zu der Bewertung des CaReWood-Prozesses wird in diesem Teil der Studie die Kaskadennutzung von Holz analysiert. Ein Kaskadensystem umfasst mehrere Lebenszyklen und damit mehrere Recycling- oder Verarbeitungsschritte. In einem Kaskadensystem wird die vollständige Verwertungskette eines Materials aus einer holistischen Perspektive betrachtet, während bei der Ökobilanzierung des CaReWood-Prozesses der Verarbeitungsprozess im Fokus stand. Kaskadensysteme sind dadurch gekennzeichnet, dass sie aufgrund der holistischen Perspektive mehre Funktionen (Multifunktionalität) bereitstellen. Die Anzahl der Funktionen steht im Bezug zu der Zahl der Kaskadenstufen: Je mehr Kaskadenstufen berücksichtigt werden, desto größer ist die Anzahl und Art der Funktionen. Dadurch kann die funktionelle Einheit von Kaskadensystemen sehr komplex werden, da sie mehrere Funktionen, d. h. Produkte, ausgedrückt in unterschiedlichen physikalischen Einheiten, umfasst. Eine zweite Charakteristik von Kaskadensystemen ist die Berücksichtigung von internen Recyclingprozessen, da jedes Produkt aus dem Material des vorangegangenen Produktes hergestellt wird. Wenn das recycelte Material als wertvolle, sekundäre Ressource betrachtet wird, muss dieses in einer Effizienzbetrachtung ebenfalls als Inputgröße berücksichtigt werden. Im Falle von Kaskadensystemen aus nachwachsenden Rohstoffen ist die Anwendung von Indikatoren zur Bestimmung des Ressourcenverbrauchs, die auch die Landfläche als primäre Ressource berücksichtigen, notwendig.

Als geeignete Methodik zur Bewertung der Ressourceneffizienz von Kaskadensystemen erscheint die exergetische Lebenszyklusanalyse, die auf thermodynamischen Grundsätzen basiert. Der Exergieansatz hat sich in der Umweltbewertung in der Vergangenheit für die Bewertung des Ressourcenverbrauchs und der Ressourceneffizienz bewährt (Amini et al. 2007; Cornelissen and Hirs 2002; Huysveld et al. 2015; Huysveld et al. 2013; Schaubroeck et al. 2013; Talens Peiró et al. 2010). Die Exergie einer Ressource oder eines Materials ist definiert als die maximale Arbeit, die von der Ressource oder dem Material verrichtet werden kann, wenn dieses durch reversible Prozesse in das thermodynamische Gleichgewicht mit seiner natürlichen Umgebung gebracht wird (Dewulf et al. 2007; Szargut et al. 1988). Der Exergieansatz eignet sich damit besonders gut für Materialien, deren Produktion besonders energieintensiv ist oder die selbst als Energieträger genutzt werden.

Der Exergieansatz wurde ursprünglich nur für Einzelprozesse angewandt, bevor er von Szargut et al. (1988) auch auf Lebenszyklusebene in Form der Cumulative Exergy Consumption (CExC) eingesetzt wurde. Als LCA Indikator wurde der Exergieansatz von Bösch et al. (2007) erstmals als Cumulative Exergie Demand (CExD) eingeführt. Eine Weiterentwicklung fand mit dem Cumulative Exergy Extraction from the Natural Environment (CEENE) Indikator von Dewulf et al. (2007) statt. CEENE wurde entwickelt,

um die Schwachstellen von CExD zu reduzieren, insbesondere in Hinblick auf die Berücksichtigung von Landfläche als primäre Ressource. Im CEENE Indikator werden die primären natürlichen Ressourcen quantifiziert und in Megajoules Exergie (MJ_{ex}) in folgenden Kategorien angegeben: Fossile Energieträger, Landressourcen, Erze, nukleare Ressourcen, abiotische erneuerbare Ressourcen, Mineralien, Wasser und atmosphärische Ressourcen.

Die Vorteile des Exergieansatzes zur Bewertung von Kaskadensystemen von Holz liegt in der Erfassung einer großen Bandbreite an Ressourcen (Klinglmair et al. 2014; Swart et al. 2015) in einer gemeinsamen Größe, nämlich Exergie. Dadurch lassen sich alle Input- und Output Flüsse – inklusive der sekundären Ressourcen – eines Systems in aggregierter Form erfassen (Dewulf et al. 2008). Dies vereinfacht die Berechnung der Ressourceneffizienz von komplexen Kaskadensystemen und liefert leicht verständliche Ergebnisse.

8.2.1 System definition

Zum Vergleich der Ressourceneffizienz eines Kaskadensystems von Holz mit der Produktion des gleichen Outputs über die derzeit übliche Verwendung von Frischholz, wurde eine LCA Studie 14040/14044 in Anlehnung an die ISO Normen durchgeführt (DIN EN ISO 14044:2006-10; DIN EN ISO 14040:2009-11). Für den Vergleich wurden zwei Systeme modelliert, die in Abbildung 23 dargestellt sind. Im Kaskadensystem wird 1 t unbehandeltes und massives Altholz in verschiedenen stofflichen Anwendungen bis hin zur finalen energetischen Verwertung genutzt. Im Vergleichssystem wird für die Bereitstellung der gleichen Funktionen jeweils Frischholz verwendet und die Produkte nach der ersten Nutzungsphase verbrannt. Der Modellierungsansatz basiert auf der Arbeit von Höglmeier et al. (2014). Die Systeme wurden jedoch um eine Vollholzanwendung im Sinne des CaReWood-Prozesses erweitert und eine aktualisierte Sachbilanz verwendet.

Das Kaskadensystem (C) beginnt mit der Sammlung von 1 t Altholz. Es wurde davon ausgegangen, dass das Holz frei von Umweltlasten aus den früheren Anwendungen ist. Im Kaskadensystem wird das Altholz zunächst in einem Sägeprozess zu Schnittholz und anschließend zu Spanplatten verarbeitet. Nach zwei Verwendungen in einer Spanplatte wird das Holz schließlich zur Energiegewinnung verbrannt. Die Prozesswärme in Sägewerk und Spanplattenwerk wird in Boilern durch die Verbrennung von Altholz aus der gleichen Tonne Altholz sowie Prozessabfällen erzeugt.

Im Primärholzsystem (PW) werden die gleichen Funktionen wie im Kaskadensystem unter der Verwendung von Frischholz bereitgestellt. Das Schnittholz wird in einem Sägewerk aus Rundholz produziert. Wie heute üblich, werden die Sägenebenprodukte für die Prozessenergie als auch die Produktion von Spanplatten verwendet. Die übrigen Spanplatten werden ebenfalls aus Frischholz, in diesem Fall aus Industrierundholz hergestellt. Die Prozesswärme der Spanplattenherstellung stammt aus der Verbrennung von Frischholz sowie Abfällen in Boilern. Im PW System werden die Produkte nach der ersten Nutzungsphase gesammelt, gehäckselt und anschließend zur Energiegewinnung verbrannt. Die Nutzenphase der Produkte wurde für beide Systeme als identisch angesehen und daher nicht in die Bewertung einbezogen.

Zum Vergleich beider Systeme müssen ihre Funktionen identisch sein (DIN EN ISO 14040:2009-11). Aufgrund der Kaskadennutzung wird am Ende der Kaskade weniger Energie erzeugt als im PW System durch die direkte Verbrennung. Aus diesem Grund wurde dem Kaskadensystem über eine Systemraumerweiterung ein Prozess zur Bereitstellung von zusätzlicher Energie ergänzt. Die Systemraumerweiterung wird als bevorzugte Methodik zur Herstellung der Nutzengleichheit in DIN EN ISO 14044:2006-10 (DIN EN ISO 14044:2006-10) genannt. Die Eignung der Systemraumerweiterung für Kaskadensysteme wurde bereits von Höglmeier et al. (2014) belegt. Allerdings werden die Ergebnisse des Vergleich durch die Modellierung der Prozesse in der Systemraumerweiterung stark beeinflusst (Höglmeier et al. 2014; Heijungs and Guinée 2007; siehe auch Abschnitt 6.4.4). Aus diesem Grund wurden folgende Energieträger modelliert, um eine möglichst transparente Ergebnisdarstellung zu gewährleisten: Altholz (C+ww), Frischholz (C+pw), Energiemix aus dem Versorgungsnetz (C+g).

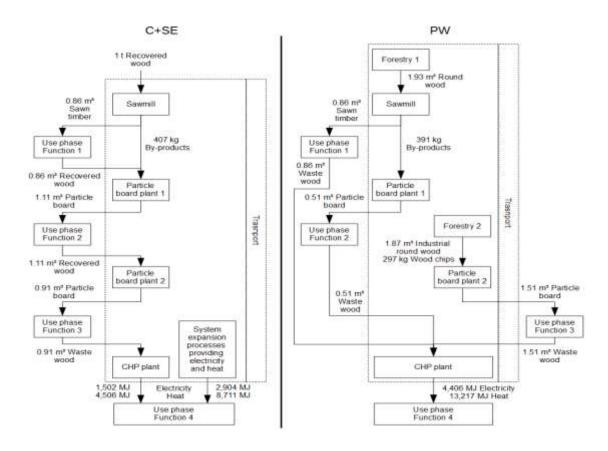


Abbildung 23 Systemgrenzen der Vergleichssysteme zur Bewertung der Ressourceneffizienz der Kaskadennutzung von Holz. Abbildung aus Risse et al. (2017).

8.2.2 Funktionelle Einheit

Die funktionelle Einheit ist definiert als die "Produktion von 0,86 m³ Schnittholz, 2,02 m³ Spanplatte und der Bereitstellung von 13217 MJ Wärme und 4406 MJ Strom". Die Menge an Schnittholz und Spanplatten ergibt sich aus der Kaskadennutzung von 1 t Altholz, während die Energiebereitstellung durch das Primärsystem definiert wird (siehe auch Abbildung 23).

8.2.3 Modellierung der Sachbilanz

Die Sachbilanz wurde auf Basis von Inventardaten aus Rüter and Diederichs (2012) modelliert. Die Daten repräsentieren den derzeitigen deutschen Industriestandard und wurden für die Sägewerke und Spanplattenwerke verwendet. Für alle Hintergrundprozesse als auch die übrigen Vordergrundprozesse wie die Verbrennungsanlage oder die forstwirtschaftliche Produktion wurden Prozesse aus der ecoinvent Datenbank v. 3.3 (Wernet et al. 2016) verwendet. Die Inventardaten für das Sägewerk und die Spanplattenproduktion wurden an die

Verwendung von Altholz als Rohstoff im Kaskadensystem angepasst. Details zu den Inventardaten finden sich in Risse et al. (2017).

8.2.4 Bewertung des Ressourcenverbrauchs und der Ressourceneffizienz

Zur Bewertung der Ressourceneffizienz auf Sub-System Ebene wurde die Methodik der Exergy Flow Analysis (ExFA) angewandt. Mit der ExFA kann die Ressourceneffizienz einzelner Prozesse oder Sub-Systeme eines Vordergrundsystems bewerten werden. Die ExFA eignet sich insbesondere dazu, die Hotspots zur Optimierung des Gesamtsystems zu identifizieren. Bei der ExFA werden alle Input und Output Flüsse eines Sub-Systems in ihren Exergiegehalt umgewandelt. Die Effizienz des Sub-Systems (μ) kann als Quotient aus dem Exergiegehalt des nutzbaren Outputs ($Useful Outputs_{Ex}$) und dem Exergiegehalt des zur Produktion des Outputs verwendeten Inputs aus Material, Energie und Betriebsstoffen ($Inputs_{Ex}$) berechnet werden (Formel 5).

Formel 5

$$\mu = \frac{\sum(Useful\ Outputs_{Ex})}{\sum(Inputs_{Ex})}$$

Zur Bewertung der forstlichen Sub-Systeme im PW System wurde anstelle der Landfläche die solare Strahlung als Inputgröße verwendet.

Zur Quantifizierung des Ressourcenverbrauchs auf Lebenszyklusebene wurde ein Exergetic Life Cycle Assessment (ELCA) mit dem CEENE-Indikator von Dewulf et al. (2007) durchgeführt. Der Indikator wurde in der Version von Alvarenga et al. (2013) und Taelman et al. (2014) verwendet. Aufgrund des geografischen Bezugs der Studie zu Deutschland wurde für die Charakterisierung der Landflächenbelegung ein Charakterisierungsfaktor von 26,5 MJ/m² x a aus Alvarenga et al. (2013) verwendet.

Auf Lebenszyklusebene wurde die Ressourceneffizienz beider Systeme mit dem Cumulative Degree of Perfection (CDP) berechnet. Das CDP wurde von Szargut et al. (1988) entwickelt, um die Effizienz von industriellen Systemen auf Lebenszyklusebene bewerten zu können. Der grundsätzliche Ansatz ist identisch mit der in Formel 5 dargestellten Gleichung. Für die Bewertung der Ressourceneffizienz von Kaskadensystemen wurde die Quantifizierung des Inputs angepasst, wie in Formel 6 dargestellt. Auf Inputseite wird zunächst der Verbrauch an primären Ressourcen über den CEENE Indikator (CEENE of Supply Chain_{Ex}) erfasst. Des

Weiteren wird das ursprünglich eingesetzte Ausgangsmaterial ($Recovered\ Material_{Ex}$) einbezogen. Da jedes weitere Produkt entlang der Kaskade aus dem Material des vorangegangen Produkts gefertigt wird, muss das innerhalb des Recyclingprozesses wiederverwendete Material ebenfalls als Input berücksichtigt werden ($Recycled\ Material_{Ex}$). Alle Input und Output Flüsse werden in ihrem Exergiegehalt in MJ_{ex} angegeben.

Formel 6

$$CDP_{mfs} = \frac{\sum (Useful\ Outputs_{Ex})}{\sum (Recovered\ Material_{Ex} + Recycled\ Material_{Ex} + CEENE\ of\ Supply\ Chain_{Ex})}$$

8.2.5 Exergetische Inventardaten

Für die ExFA und ELCA werden thermodynamische Daten benötigt, um die Input und Output Flüsse in ihren Exergiegehalt zu konvertieren. Der Exergiegehalt verschiedener Materialien und Produkte kann aus Literatur und Datenbanken entnommen werden. Alternativ kann der Exergiegehalt über die chemische Zusammensetzung ermittelt werden. Für die Exergiegehalte der verschiedenen Substanzen wurden die Werte aus Szargut et al. (1988), Dewulf et al. (2007) und Ayres and Ayres (1999) entnommen. In der Literatur fehlende Werte wurden eigenständig anhand der chemischen Zusammensetzung berechnet. Für detaillierte Informationen zu den exergetischen Inventardaten wird auf Risse et al. (2017) verwiesen.

8.3 Ergebnisse

8.3.1 Exergy Flow Analysis und Sub-System Effizienzen

In Abbildung 24 sind die Ergebnisse der Exergy Flow Analysis für die Vordergrundsysteme dargestellt.

Die Ergebnisse zeigen, dass in beiden forstlichen Sub-Systemen des PW-Systems der Exergieverlust am höchsten ist. Aufgrund des hohen Flächenverbrauchs und den langfristigen Produktionszeiträumen in der forstlichen Produktion stellt die solare Strahlung die wesentliche Inputgröße für beide forstlichen Sub-Systeme dar. Dadurch berechnen sich geringe Effizienzen in Höhe von 0,7% und 0,2% für die Produktion von Rundholz und Industrierundholz.

In beiden Systemen haben die Sägewerke eine hohe Effizienz. Dies lässt sich mit der Verwendung der Sägenebenprodukte in der Spanplattenproduktion erklären. Der Exergieverlust in den Sägewerks- und Spanplattenprozessen beruht auf der Verbrennung von Abfällen zur Produktion von Prozessenergie sowie dem Verbrauch von Betriebsmitteln wie Strom. Durch die Verwendung von Altholz anstelle von Frischholz kann eine Effizienzsteigerung von 2% im Sägewerk und 4-5% in der Spanplattenproduktion erzielt werden. Im Vergleich zu Cornelissen and Hirs (2002) (85%) ist die Effizienz der Spanplatten Sub-Systeme etwas niedriger, was vermutlich an den umfangreicheren und aktuelleren Inventardaten liegt, die in der vorliegenden Arbeit verwendet wurden.

Die Effizienz von Säge- und Spanplattenwerk kann um etwa 1-3% gesteigert werden, wenn die Boiler zur Produktion von Prozessenergie durch KWK-Anlagen ersetzt werden. Weiteres Optimierungspotenzial bietet eine optimale Logistik, um einen Anstieg der Holzfeuchte des Altholzes zu vermeiden und so den Trocknungsaufwand im Kaskadensystem zu reduzieren.

Obwohl es sich um die derzeit modernste Verbrennungstechnologie handelt, stellt der Verbrennungsprozess in der KWK-Anlage mit 21% einen Hotspot für den Exergeieverlust dar. Der Exergieverlust kann mit dem geringen exergetischen Potenzial der Wärmeenergie, dargestellt als Carnot-Faktor, erklärt werden. Je geringer die Differenz zwischen der Temperatur des Wärmestroms und der Temperatur der definierten Referenzumgebung, desto geringer ist sein Exergiegehalt.

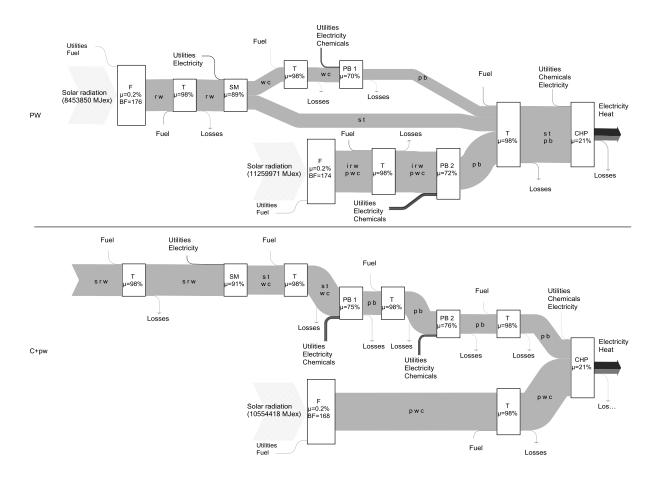


Abbildung 24 Exergy Flow Analysis und Sub-System Effizienzen der Vordergrundsysteme des Kaskadensystems inkl. Systemraumerweiterung auf Basis von Frischholz (C+pw) und dem Frischholzsystems (PW). Abbildung aus Risse et al. (2017).

8.3.2 Exergetische Lebenszyklusbewertung

Die CEENE Werte sind in Abbildung 25 für die beiden Vergleichssysteme dargestellt. Der Beitrag der jeweiligen Sub-Systeme zum Gesamtressourcenverbrauch ist in Abbildung 26 dargestellt. Die CDP Werte sind in Tabelle 27 zusammengefasst. Die Darstellung der Effizienzen folgt der holistischen Perspektive eines Kaskadensystems. Die Effizienz eines Sub-Systems beschreibt daher die Effizienz des Lebenszyklus bis zu dem jeweiligen Sub-System, unter Einbeziehung aller bis dahin geleisteten Funktionen. Dieser Ansatz verdeutlicht zwar die Entwicklung der Effizienz entlang des Lebenszyklus, erlaubt allerdings keinen Vergleich zwischen zwei Sub-Systemen aus verschiedenen Systemen.

Der Gesamtressourcenverbrauch des PW Systems beträgt 163.437 MJex/fu und hat eine Effizienz von 21%. Für die Kaskadensysteme wurde ein Ressourcenverbrauch von 94.628 MJex/fu für C+pw, von 35.833 MJex/fu für C+g und 16.729 MJex/fu für C+ww ermittelt (Abbildung 25). Für die Kaskadensysteme wurden Effizienzen von 28% (C+pw),

46% (C+g) und 45% (C+ww) ermittelt (Tabelle 27). Die Ergebnisse zeigen, dass die Kaskadennutzung in Hinblick auf den Ressourcenverbrauch der Verwendung von Primärholz zu bevorzugen ist. Dies bestätigt die Ergebnisse von Cornelissen and Hirs (2002), Höglmeier et al. (2014) und Gärtner et al. (2013). Des Weiteren können im Kaskadensystem die gleichen Funktionen ressourceneffizienter erzeugt werden als über das Primärholzsystem.

Aus Tabelle 27 ist ersichtlich, dass die Effizienz von einem Sub-System zum nächsten abnimmt. Dies ist damit zu begründen, dass der Exergieverlust mit jeder Kaskadenstufe z. B. aufgrund der Verbrennung von Holzabfällen zur Produktion von Prozessenergie, zunimmt. Der wesentliche Effizienzverlust im Kaskadensystem besteht zwischen dem Sägewerk Sub-System und dem Spanplattenwerk 1 und beläuft sich auf etwa 23%. Dieser Verlust kann durch den hohen Energieverbrauch bei der Produktion von Spanplatten erklärt werden. Im Umkehrschluss bedeutet dies, dass bei einem Erhalt des Produkts in Vollholzzustand zu einer Steigerung der Effizienz des Gesamtsystems führen kann. Dies bestätigt die Argumentation von Sirkin and Houten (1994), die eine Vermeidung des Qualitätsverlusts entlang der Kaskade als wesentlichen Faktor zur Optimierung der Ressourceneffizienz ansehen.

Der Ressourcenverbrauch und die Effizienz des PW Systems sind stark durch die beiden forstlichen Sub-Systeme beeinflusst. Mit 94% tragen die forstlichen Sub-Systeme zum CEENE Wert des PW Systems bei, wobei die Landressourcen den größten Teil ausmachen. Landressourcen dominieren auch die CEENE Ergebnisse in Schaubroeck et al. (2013) und Schaubroeck et al. (2016), die ebenfalls forstliche Systeme analysiert haben. Insgesamt stellt die Landfläche die Ressource dar, die den Vergleich der beiden Systeme maßgeblich beeinflusst. Aufgrund der geringen Effizienzen in den forstlichen Sub-Systemen, sind auch die Effizienzen der nachfolgenden Sub-Systeme im PW System entsprechend gering. Aufgrund des großen Einflusses der forstlichen Systeme auf die Ergebnisse, wird die Bewertung forstlicher Systeme mit dem Exergieansatz in Abschnitt 8.3.3.2 ausführlich diskutiert.

Neben den Landressourcen werden insbesondere Ressourcen aus der Kategorie fossiler Energieträger in den beiden Systemen verbraucht. Sie dienen einerseits als Energieträger, insbesondere im C+g System, und andererseits als Rohstoff für Chemikalien wie Klebstoffe. Etwa 80% der gesamten fossilen Energieträger aus dem PW System werden im Sub-System zur Spanplattenproduktion aufgrund des hohen Bedarfs an Energie und Holzklebstoffen verbraucht. Für das C+pw System liegt der Wert bei 81%, für C+g bei 47% und bei 85% im

C+ww System. Um die Systeme weniger abhängig von fossilen Energieträgern zu machen, ist die Verwendung von Klebstoffsystemen auf Basis nachwachsender Rohstoffe eine mögliche Option.

In Abschnitt 8.3.1 wurde bereits erwähnt, dass die Einsparungen auf Sub-System Ebene durch die Verwendung von Altholz anstelle von Frischholz, zu einem geringen Anstieg der Sub-System Effizienzen führt. Die gleiche Beobachtung zu den sogenannten direkten Kaskadeneffekten zeigt sich auch auf Lebenszyklusebene. Die CEENE Werte für das Sägewerk (C: 1378 MJex/fu; PW: 1686 MJex/fu) und das Spanplatten Sub-System (C: 14.082 MJex/fu; PW: 14.785 MJex/fu) sind im C System niedriger als im PW System (Abbildung 26). Auf Lebenszyklusebene liegt das Einsparpotential von Ressourcen durch den Einsatz von Altholz bei 8% im Sägewerk und 5% im Spanplattenwerk. Die vollständige Substitution des Frischholzes durch Altholz führt also zu vergleichsweise geringen Ressourceneinsparungen in der eigentlichen Herstellung der Produkte. Hinzu kommt, dass bei einer vergleichenden Studie wie dieser, die direkten Einspareffekte durch den Ressourcenverbrauch in den Prozessen der Systemraumerweiterung vollständig kompensiert werden.

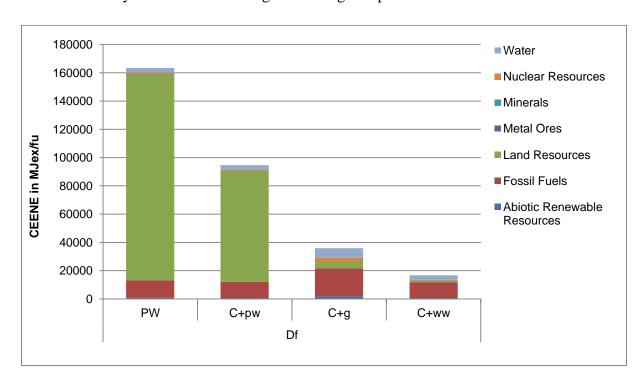


Abbildung 25 Verbrauch primärer Ressourcen (CEENE) für beide Systeme. Für das Kaskadensystem sind die drei Varianten mit verschiedenen Energieträgern in der Systemraumerweiterung dargestellt. $PW = Primärholzsystem, \quad C+ = Kaskadensystem \quad mit \quad Systemerweiterung \quad auf \quad Basis \quad von \\ pw = Primärholz, \quad ww = Altholz \quad und \quad g = nationaler \quad Energiemix. \quad Abbildung \quad verändert \quad nach \quad Risse \quad et \quad al. \\ (2017).$

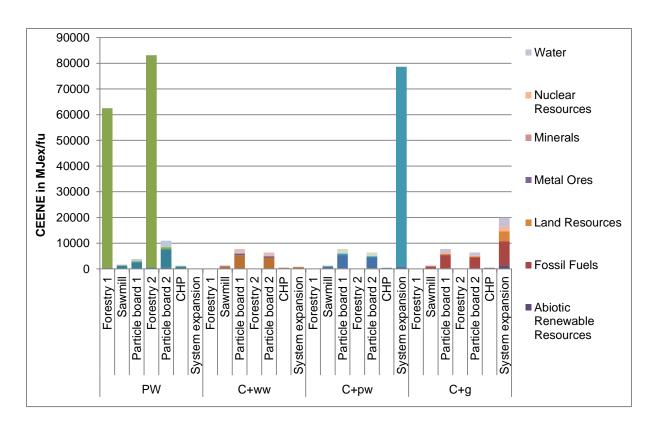


Abbildung 26 Beitrag jeweiliger Sub-Systeme zum Gesamtressourcenverbrauch (CEENE) für die analysierten Systeme. Abbildung verändert nach Risse et al. (2017).

Tabelle 27 Ressourceneffizienz für die beiden untersuchten Systeme sowie die zugehörigen Sub-Systeme. Tabelle verändert nach Risse et al. (2017).

		Useful output	CDP
Whole System	PW	sawn timber, particle board, energy	21%
	C+pw		28%
	C+g		46%
	C+ww		45%
System expansion	ww	energy	20%
	g		23%
	\mathbf{pw}		6%
Forestry 1	PW	round wood	30%
	C	-	-
Sawmill	\mathbf{PW}	sawn timber, by-products	26%
	C		85%
Particle board 1	\mathbf{PW}	sawn timber, particle board	22%
	C		62%
Forestry 2	\mathbf{PW}	Industrial round wood	30%
	C	-	-
Particle board 2	\mathbf{PW}	sawn timber, particle board	20%
	C		60%
Particle board 3	\mathbf{PW}	sawn timber, particle board	-
	C		-
СНР	\mathbf{PW}	sawn timber, particle board,	21%
	C	energy	53%

8.3.3 Kritische Bewertung der Methodik

8.3.3.1 Einfluss der Systemraumerweiterung

In der Arbeit wurde die Systemraumerweiterung zum Vergleich eines Kaskadensystems mit einem Primärholzsystem gewählt, wie er sich schon in der Arbeit von Höglmeier et al. (2014) bewährt hat. Allerdings war eine der Schlussfolgerungen in Höglmeier et al. (2014), dass die Modellierung der Prozesse in der Systemraumerweiterung entscheidenden Einfluss auf die Ergebnisse und Schlussfolgerungen des Systemvergleichs haben kann (siehe auch Abschnitt 6.4.4). Die Ergebnisse unserer Arbeit zeigen, dass zwar der absolute Ressourcenverbrauch variiert und sich die Zusammensetzung des CEENE Wertes mit einer Veränderung des Energieträgers Systemraumerweiterung ändert, bleiben der allerdings die Schlussfolgerungen Alle \mathbf{C} unverändert. Systeme haben einen niedrigeren Ressourcenverbrauch und eine höhere Ressourceneffizienz als das PW System. Die Modellierung Systemraumerweiterung wird der dann relevant. wenn andere Umweltwirkungskategorien betrachtet werden. So ist das GWP 100 ff des C+g Systems etwa 75% höher als das GWP 100 ff des PW Systems und 101% höher als im C+ww und 94% höher als im C+pw System.

Zusammenfassend kann festgehalten werden, dass zwar die Effizienz und der Gesamtressourcenverbrauch durch die Wahl der Systemraumerweiterungsprozesse nicht entscheidungsrelevant beeinflusst werden, dies aber bei anderen Umweltwirkungskategorien entscheidenden Einfluss haben kann. Für entscheidungsrelevante Studien ist die Auswertung mehrerer Umweltwirkungskategorien daher essentiell.

8.3.3.2 Exergieanalyse für die Bewertung der Ressourceneffizienz von multifunktionalen Systemen

Wie eingangs beschrieben, wurde die Exergieanalyse als geeignete Methode identifiziert, da sie die charakteristischen Eigenschaften von Kaskadensystemen, d. h. Multifunktionalität und interne Recyclingprozesse, gut berücksichtigen kann. Der Vorteil der Exergieanalyse ist die Aggregation aller Input und Outputflüsse eines Systems auf Basis des Exergiegehalts. Aufgrund des physikalischen Ansatzes ist diese Art der Gewichtung einzelner Flüsse unabhängig von subjektiven Entscheidungen, wie es bei der traditionellen Gewichtung in der LCA der Fall ist. Der Vorteil eines aggregierten Indikators ist die Vergleichbarkeit zwischen

zwei oder mehr Systemen und erleichtert so die Entscheidungsfindung. Insbesondere wenn die Ergebnisse in einem Effizienzindikator verwendet werden sollen, ist die gemeinsame Einheit von Vorteil. Auf der anderen Seite ist mit aggregierten Indikatoren ein Transparenzverlust, insbesondere bei komplexen Systemen, verbunden. Dies kann bei Entscheidungen wichtige Detailaspekte eines Systems verschleiern und damit Fehlentscheidungen verursachen.

Bewertung Der Exergieansatz hat sich als geeignete Methodik für die des Ressourcenverbrauchs in multifunktionalen Systemen bewährt. Bei der Betrachtung der Ergebnisse fällt jedoch auf, dass die Charakterisierung der Landflächenbelegung in forstlichen Systemen Schwachstellen zeigt. Da Landfläche keinen Exergiegehalt aufweist, muss ein Proxy gewählt werden, um die Landflächenbelegung in Exergie ausdrücken zu können. Im Falle des angewandten Charakterisierungsfaktors erfolgt dies über die potentielle Nettoprimärproduktion einer Fläche (Alvarenga et al. 2013) und unterliegt damit bestimmten Modellierungsannahmen. Damit ist diese Art der Charakterisierung ebenfalls eine Art Gewichtung, die je nach Ansatz die Ergebnisse einer Studie beeinflussen kann. Trotz dieses Einflusses sind die Ergebnisse für das PW System nachvollziehbar. Die forstliche Produktion bedarf naturgemäß einer langfristigen Flächenbelegung, sodass die forstliche Produktion aus exergetischer Sicht als ineffizientes System dargestellt wird. Dies bedeutet allerdings nicht, dass die forstliche Produktion nun durch waldbauliche Maßnahmen optimiert werden sollte. Vielmehr zeigt das Ergebnis die Schwachstelle der Effizienzberechnung für forstliche Systeme. Während auf Inputseite der Landflächenverbrauch eines forstlichen Systems vollständig erfasst wird, werden als Output ausschließlich die erzeugten Holzprodukte berücksichtigt. Dabei stellen forstliche Systeme im Sinne eines Ökosystems weitaus mehr Funktionen zur Verfügung als Holzprodukte. Die übrigen Ökosystemdienstleistungen werden im Output des forstlichen Systems nicht berücksichtigt. Anders ausgedrückt: Der hohe Exergieverlust forstlichen Sub-Systemen in den liegt nicht nur an dem Wachstumsmetabolismus der Bäume, sondern auch daran, dass die zusätzlichen Leistungen des forstlichen Systems auf Outputseite der Effizienzberechnung nicht berücksichtigt werden. Die Exergie ist also nicht verloren, sondern in andere Ökosystemdienstleistungen umgewandelt. Da in der Sachbilanz der Landflächenverbrauch allerdings nicht über die Holzprodukte hinaus auf andere Ökosystemdienstleistungen allokiert wird, bleiben diese in der Effizienzrechnung unberücksichtigt. Eine weiterführende Auseinandersetzung mit der Berechnung von Effizienzen von Ökosystemen im Spannungsfeld mit industriellen Systemen ist daher von großer Bedeutung.

8.3.3.3 Grenzen der Studie

Wie schon in Abschnitt 6.4.5 diskutiert, wurden auch in dieser Arbeit die zeitlichen Aspekte sowie die Auswirkungen von Marktverschiebungen im Zusammenhang mit der Kaskadennutzung unberücksichtigt gelassen. Es muss jedoch davon ausgegangen werden, dass sich das Kaskadensystem über einen Zeitraum von 50-100 Jahren erstreckt. In dieser Zeit werden sich die Verarbeitungstechnologien, die Energieversorgung sowie Ressourcenvorkommen signifikant verändern. Die Unsicherheiten der unter diesen Bedingungen ermittelten Ergebnisse sind daher entsprechend hoch.

Das Ziel der Arbeit war die Bewertung der Ressourceneffizienz der Kaskadennutzung von Holz. Ganz bewusst wurde in diesem Fall ausschließlich eine Methodik zur Bewertung des Ressourcenverbrauchs hinsichtlich ihrer Eignung für Kaskadensysteme untersucht. Für die Entscheidungsfindung ist es allerdings notwendig, transparente Ergebnisse auf Basis eines Indikatoren Sets bereitzustellen, um die große Bandbreite der Umweltwirkungen darstellen zu können (Steinmann et al. 2016).

8.4 Schlussfolgerungen und Ausblick

Die Ergebnisse zeigen, dass die Kaskadennutzung von Holz eine deutlich höhere Ressourceneffizienz aufweist als die derzeit übliche Nutzungsweise von Holz. Der größte Vorteil liegt in der Vermeidung von Landflächenbelegung. Ein ähnliches Ergebnis wurde auch in der Bewertung des CaReWood-Prozesses beobachtet (siehe Abschnitt 6.5). Durch den Einsatz von Altholz steigt die Effizienz im Sägewerk und Spanplattenwerk um bis zu 8%. Trotz dieser Effizienzsteigerung auf Sub-System Ebene, wird die Effizienz des gesamten Kaskadensystems durch die Effizienz der Energieproduktion in den Prozessen Systemraumerweiterung kompensiert. Insgesamt der Energieträger hat der Systemraumerweiterung keinen entscheidenden Einfluss auf die Schlussfolgerungen. In allen drei Szenarien hat das Kaskadensystem eine größere Ressourceneffizienz als das Primärholzsystem.

Die Arbeit hat gezeigt, dass sich der Exergieansatz grundsätzlich für die Bewertung multifunktionaler Kaskadensysteme eignet. Dennoch haben sich Schwachstellen in der Charakterisierung der Landflächenbelegung im Zusammenhang mit der Bewertung der Effizienz von Ökosystemen gezeigt. Dies wird insbesondere offenbar, wenn die Ökosysteme bzw. ein Teil ihrer Funktion im Spannungsfeld mit industriellen Systemen stehen. Zur zuverlässigen Erfassung der Ressourceneffizienz von Ökosystemen ist die Weiterentwicklung vorhandener Methoden notwendig.

9 Zusammenfassung

Das Forschungsvorhaben zielte darauf ab, den im Rahmen des europäischen Forschungsprojektes "CaReWood - Cascading Recovered Wood" entwickelten Prozess zur Aufarbeitung von massivem Altholz zu hochwertigen Vollholzprodukten ökologisch und ökonomisch zu bewerten. Darüber hinaus wurde die Ressourceneffizienz der Kaskadennutzung von Holz untersucht.

Für die ökologische Bewertung des CaReWood-Prozesses wurde eine Ökobilanzierung durchgeführt. Mit der Ökobilanzierung können die Umweltwirkungen des Prozesses analysiert und mit alternativen Verarbeitungsverfahren verglichen werden. Entsprechend dem geografischen Bezug der Studie zu Deutschland wurde die Verarbeitung von Altholz im CaReWood-Prozess mit der direkten Verbrennung verglichen.

Die Ergebnisse zeigen, dass der CaReWood-Prozess insgesamt eine ökologische Verwertungsoption für Altholz darstellt. Im Vergleich mit der Verbrennung weist der CaReWood-Prozess geringere ökologische Vorteile auf. Dies liegt in erster Linie an den hohen Gutschriften für die Substitution fossil basierter Energie.

Neben der Ökologie ist die Ökonomie ein wesentlicher Parameter hinsichtlich der Frage, ob die Verwertung von massivem Altholz in einer weiteren Vollholzanwendung ein nachhaltiges und wirtschaftliches Modell sein kann. Dazu wurde eine Potentialstudie zu den Produktionskosten, dem Umsatz und dem Gewinn des CaReWood-Prozesses durchgeführt. Insgesamt weisen die Ergebnisse auf ein hohes wirtschaftliches Potential des CaReWood-Prozesses hin. Die wesentlichen Einflussparameter sind der Altholzpreis sowie der Verkaufspreis des CaReWood-Produktes.

Die Ressourceneffizienz eines Kaskadensystems von Holz wurde mit Hilfe einer Exergieanalyse bewertet und mit einem System auf Basis von Frischholz verglichen. Die Ergebnisse zeigen, dass die Kaskadennutzung von Holz gegenüber der Frischholznutzung einen niedrigeren Ressourcenverbrauch sowie eine höhere Ressourceneffizienz aufweist.

Die Ergebnisse des Forschungsvorhabens verdeutlichen den großen Einfluss der Methodenwahl auf die Ergebnisse und die Schlussfolgerungen der Studie. Insbesondere im Zusammenhang mit der stofflichen Nutzung von Holz und anderen nachwachsenden Rohstoffen ist daher eine Weiterentwicklung der Ökobilanzmethode notwendig, um Aspekte

wie die Kohlenstoffspeicherung angemessen berücksichtigen zu können. Selbiges gilt für die Bewertung indirekter Kaskadeneffekte. Die indirekten Effekte lassen sich durch die Berücksichtigung von Markteffekten, wie sie durch eine bewusste Entscheidung für oder gegen eine bestimmte Nutzung von Holz auftreten, erfassen. Insbesondere für Recyclingprozesse ist bekannt, dass sie unter volkswirtschaftlichen und sozioökonomischen Gesichtspunkten große Vorteile gegenüber der Verbrennung haben können (EC 2005). Es bedarf der entsprechenden Werkzeuge und Methoden, um die Folgen dieser Entscheidungen transparent und zuverlässig abbilden zu können. Weitere Forschungsvorhaben sollten sich in Zukunft daher schwerpunktmäßig auf die Entwicklung und Anwendung neuer Methoden im Zusammenhang mit der Kaskadennutzung von Holz fokussieren.

Für die Verwendung von massivem Altholz in Vollholzanwendungen zeigen die Ergebnisse aus dem CaReWood-Projekt gute Chancen für eine Etablierung in der nahen Zukunft. Die technischen Grundlagen wurden im Rahmen des CaReWood-Projektes gelegt und wesentliche verbleibende Kernfragen sind identifiziert. Trotz der allgemeinen Vorbehalte seitens der Industrie gibt es aufgeschlossene und interessierte holzverarbeitende Unternehmen, die die Idee einer Vollholzaufbereitung für die Herstellung ihrer Produkte bereits aufgegriffen haben. Ein nächster Schritt wäre daher die Zusammenarbeit mit Unternehmen zur detaillierteren und praktischen Ausarbeitung des CaReWood-Prozesses, z. B. in Form einer Pilotanlage.

Für den wirtschaftlichen Erfolg der Kaskadennutzung ist neben der industriellen die gesellschaftliche Akzeptanz gegenüber Kreislaufprodukten notwendig. Vorläufige Ergebnisse aus Arbeitspaket 5 geben Hinweise auf eine Akzeptanz von Recyclingprodukten, auch für Holzprodukte. Dennoch ist neben Forschungsbedarf die Ausarbeitung von Konzepten zur gesellschaftlichen Akzeptanz von Holzrecyclingverfahren und Kreislaufprodukten notwendig. Dazu zählt nicht zuletzt die allgemeine und transparente Aufklärung zu den Vor- und Nachteilen von Holzprodukten verschiedenster Anwendungsgebiete.

10 Anhang

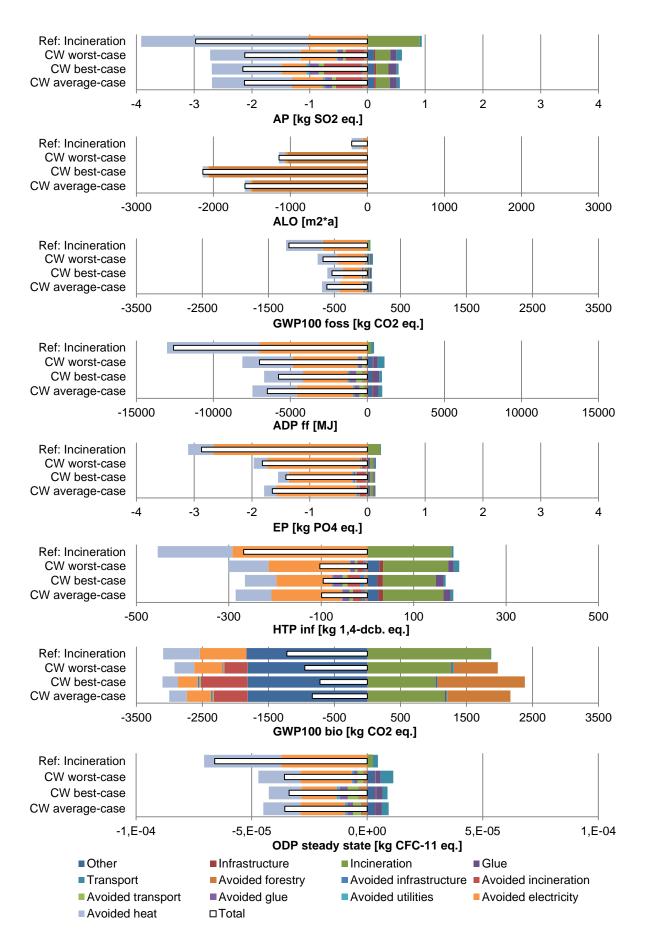


Abbildung 27 Umweltwirkungen des CaReWood-Systems im Vergleich zum Referenzsystem bezogen auf 1 t Altholz für das average-case, best-case und worst-case Szenario. Die weißen Balken repräsentieren die Differenz aus Ziel-und Gutschriftsystem

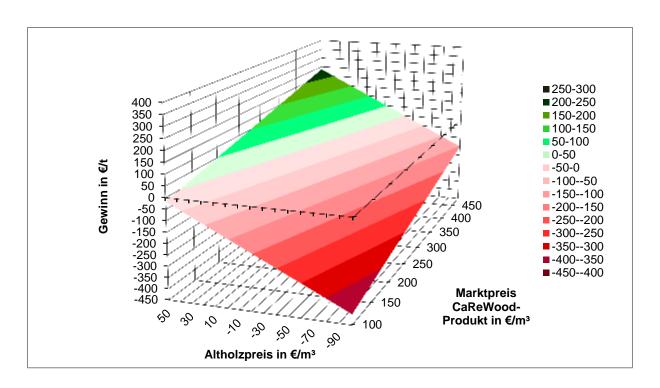


Abbildung 28 Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt und dem erzielten Gewinn je verarbeiteter Tonne Altholz, basierend auf dem schlechtesten Preisszenario und einer Ausbeute von 26% im CaReWood-Prozess. Der Altholzpreis bezieht sich auf die Entsorgungskosten für den Erzeuger. Die farblich differenzierte Wertespanne bezieht sich auf den Gewinn.

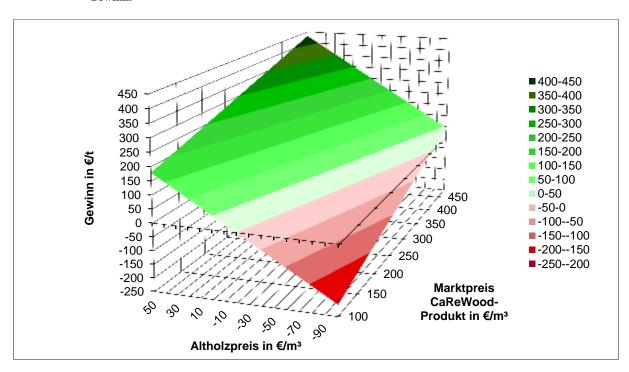


Abbildung 29 Zusammenhang zwischen dem Altholzpreis, dem Verkaufspreis für das CaReWood-Produkt und dem erzielten Gewinn je verarbeiteter Tonne Altholz, basierend auf dem besten Preisszenario und einer Ausbeute von 26% im CaReWood-Prozess. Der Altholzpreis bezieht sich auf die Entsorgungskosten für den Erzeuger. Die farblich differenzierte Wertespanne bezieht sich auf den Gewinn.

11 Literaturverzeichnis

AGFW, 2017. Preis* für Fernwärme nach Anschlusswert in Deutschland in den Jahren 1992 bis 2015 (in Euro pro Megawattstunde). Statista - Das Statistik-Portal.

https://de.statista.com/statistik/daten/studie/250114/umfrage/preis-fuer-fernwaerme-nach-anschlusswert-in-deutschland/ (accessed 17.06.12).

Althaus, H.-J., 2010. Glued laminated timber production, for indoor use - RER. Ecoinvent 3.3 dataset documentation.

Alvarenga, R.A.F., Dewulf, J., Van Langenhove, Herman R., Huijbregts, M.A.J., 2013. Exergy-based accounting for land as a natural resource in life cycle assessment. Int. J. Life Cycle Assess. 18 (5), 939-947. DOI: 10.1007/s11367-013-0555-7.

Amini, S.H., Remmerswaal, J., Castro, M.B., Reuter, M.A., 2007. Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 15 (10), 907-913. DOI: 10.1016/j.jclepro.2006.01.010.

Arnold, K., Geibler, J. von, Bienge, K., Stachura, C., Borbonus, S., Kristof, K., 2009. Kaskadennutzung von nachwachsenden Rohstoffen: Ein Konzept zur Verbesserung der Rohstoffeffizienz und Optimierung der Landnutzung. Wuppertal (Wuppertal Papers, 180).

Ayres, R. U.; Ayres, L. W., 1999. Accounting for resources 2. Cheltenham, UK, Northampton, MA, USA, Edward Elgar.

Bais-Moleman, A.L., Sikkema, R., Vis, M., Reumerman, P., Theurl, M.C., Erb, K.-H., 2017. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union. Journal of Cleaner Production. DOI: 10.1016/j.jclepro.2017.04.153.

Betz, M., Coen, D., Deimling, S., Kreising, J., 2002. Ökobilanz-Bausteine. Thermische Verwertung von Holzprodukten. Inputabhängige Modellierung der End-of-Life Prozesse von Holz. PE Europe GmbH. Leinfelden-Echterdingen.

Binder, G., 2002. Sägeindustrie - Rohstoffversorgung. in: proHolz Austria (Eds.): Forst & Holz, Bd. 8. Wien (Zuschnitt, 8), 16-17.

BMUB (2012). Verordnung über Anforderungen an die Verwertung und Beseitigung von Altholz (Altholzverordnung - AltholzV). AltholzV, vom 24.02.2012.

Borcherding, M., 2007. Rundholztransportlogistik in Deutschland - eine transaktionskostenorientierte empirische Analyse. Dissertation. Universität Hamburg, Hamburg.

Bösch, M.E., Hellweg, S., Huijbregts, M.A.J., Frischknecht, R., 2007. Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int. J. Life Cycle Assess. 12 (3), 181-190. DOI: 10.1065/lca2006.11.282.

Brandão, M., Levasseur, A., Kirschbaum, Miko U. F., Weidema, B.P., Cowie, A.L., Jørgensen, S.V. et al., 2013. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 18 (1), 230-240. DOI: 10.1007/s11367-012-0451-6.

Bundesministerium für Ernährung und Landwirtschaft (BMEL), 2014. Nationale Politikstrategie Bioökonomie. Nachwachsende Ressourcen und biotechnologische Verfahren als Basis für Ernährung, Industrie und Energie. Berlin.

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), 2007. Strategie Ressourceneffizienz. Impulse für den ökologischen und ökonomischen Umbau der Industriegesellschaft. Berlin.

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), 2015. Deutsches Ressourceneffizienzprogramm (ProgRess) II: Fortschrittsbericht 2012-2015 und Fortschreibung 2016-2019. Programm zur nachhaltigen Nutzung und zum Schutz der natürlichen Ressourcen. Berlin.

Bundesnetzagentur, 2017. Strompreise für Gewerbe- und Industriekunden in Deutschland in den Jahren 2006 bis 2016 (in Euro-Cent pro Kilowattstunde). Statista - Das Statistik-Portal.

Cherubini, F., Peters, G.P., Berntsen, T., Stromman, A.H., Hertwich, E., 2011. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 3 (5), 413-426. DOI: 10.1111/j.1757-1707.2011.01102.x.

Cornelissen, R.L., Hirs, G.G., 2002. The value of the exergetic life cycle assessment besides the LCA. Energ. Convers. Manage. 43 (9-12), 1417-1424. DOI: 10.1016/S0196-8904(02)00025-0.

Dewulf, J., Bösch, M.E., Meester, B.D., van der Vorst, G., Van Langenhove, Herman R., Hellweg, S., Huijbregts, M.A.J., 2007. Cumulative exergy extraction from the natural

environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ. Sci. Technol. 41 (24), 8477-8483. DOI: 10.1021/es0711415.

Dewulf, J., Van Langenhove, Herman R., Muys, B., Bruers, S., Bakshi, B.R., Grubb, G.F. et al., 2008. Exergy. Its potential and limitations in environmental science and technology. Environ. Sci. Technol. 42 (7), 2221-2232. DOI: 10.1021/es071719a.

Doka, G., 2009. Life cycle inventories of waste treatment services: ecoinvent report no. 13. Swiss Center for Life Cycle Inventories.

Dürrschmidt, W., Böhme, D., Hammer, E., 2011. BMU-Broschüre: Erneuerbare Energien - Innovation für eine nachhaltige Energiezukunft. 8. Aufl. Martin Pehnt, Lars-Arvid Brischke, Sirkka Jacobsen, Guido Reinhard, Horst Fehrenbach, Regine Vogt und Jan Walter. Hg. v. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). Berlin.

Earles, J.M., Halog, A., 2011. Consequential life cycle assessment: a review. Int. J. Life Cycle Assess. 16 (5), 445-453. DOI: 10.1007/s11367-011-0275-9.

Ebner, G., 2013. BSH-Beispielskalkulation (Holzkurier).

EC, 2005. Taking sustainable use of resources forward: A Thematic Strategy on the prevention and recycling of waste. Brussels.

Essel, R., Carus, M., 2014. Increasing resource efficiency by cascading use of biomass. Rural 21, 28-29.

European Commission - Joint Research Centre - Institute for Environment and Sustainability (JRC), 2010. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. 1. Aufl. Luxembourg, Publications Office of the European Union.

European Commission (EC), 2011. Roadmap to a resource efficient Europe. Brussels.

European Commission (EC), 2012. Innovating for sustainable growth. A bioeconomy for Europe. Brussels.

European Commission (EC), 2014. Towards a circular economy: A zero waste programme for Europe. Brussels.

European Commission (EC), 2017. Energy statistics. Energy datasheets: EU-28 countries.

European Panel Federation (EPF), 2014. Annual report 2013/2014. Brussels.

Eurostat, 2017. Preise Elektrizität für Industrieabnehmer, ab 2007 - halbjährliche Daten.

Norm DIN EN 408:2012-10. Holzbauwerke – Bauholz für tragende Zwecke und Brettschichtholz – Bestimmung einiger physikalischer und mechanischer Eigenschaften; Deutsche Fassung EN 408:2010+A1:2012. Berlin, Beuth.

FCBA, 2010-2013. DEMOWOOD. Optimisation of material recycling and energy recovery from waste and demolition wood in different value chains. Frankreich.

Fraanje, P.J., 1997. Cascading of pine wood. Resour. Conserv. Recycl. 19 (1), 21-28. DOI: 10.1016/S0921-3449(96)01159-7.

G20 Leaders' Declaration, 2017. Annex to G20 Leaders' Declaration. G20 Resource efficiency dialogue. Hamburg.

Gärtner, S.O., Hienz, G., Keller, H., Müller-Lindenlauf, M., 2013. Gesamtökologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich. IFEU. Heidelberg.

Goedkopp, M., Heijungs, R., Huijbregts, M.A.J., Schryver, A.D., Struijs, J., van Zelm, R., 2009. ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Supporting Information.

Gores, S., Harthan, R., Penninger, G., 2011. Kraft-Wärme-Kopplungs-Vereinbarung vom 19. Dezember 2003 für den Teilbereich Kraft-Wärme-Kopplung, Berichtszeitraum 2009. Öko-Institut e.V.

Guinée, Jeroen B., 2002. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. 7. Aufl. KLUWER ACADEMIC PUBLISHERS. New York, Boston, Dordrecht, London, Moscow.

Heijungs, R., Guinée, J.B., 2007. Allocation and 'what-if' scenarios in life cycle assessment of waste management systems. Waste Management 27 (8), 997-1005. DOI: 10.1016/j.wasman.2007.02.013.

Höglmeier, K., Steubing, B., Weber-Blaschke, G., Richter, K., 2015. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J. Environ. Manage. 152, 158-170. DOI: 10.1016/j.jenvman.2015.01.018.

Höglmeier, K., Weber-Blaschke, G., Richter, K., 2014. Utilization of recovered wood in cascades versus utilization of primary wood - a comparison with life cycle assessment using

system expansion. Int. J. Life Cycle Assess. 19 (10), 1755-1766. DOI: 10.1007/s11367-014-0774-6.

Huysman, S., Sala, S., Mancini, L., Ardente, F., Alvarenga, R.A.F., Meester, S. de et al., 2015. Toward a systematized framework for resource efficiency indicators. Resour. Conserv. Recycl. 95, 68-76. DOI: 10.1016/j.resconrec.2014.10.014.

Huysveld, S., Schaubroeck, T., Meester, S. de, Sorgeloos, P., Van Langenhove, Herman R., van linden, V., Dewulf, J., 2013. Resource use analysis of Pangasius aquaculture in the Mekong Delta in Vietnam using Exergetic Life Cycle Assessment. J. Clean. Prod. 51, 225-233. DOI: 10.1016/j.jclepro.2013.01.024.

Huysveld, S., van linden, V., Meester, S. de, Peiren, N., Muylle, H., Lauwers, L., Dewulf, J., 2015. Resource use assessment of an agricultural system from a life cycle perspective – a dairy farm as case study. Agricultural Systems 135, 77-89. DOI: 10.1016/j.agsy.2014.12.008.

Keegan, D., Kretschmer, B., Elbersen, B., Panoutsou, C., 2013. Cascading use: a systematic approach to biomass beyond the energy sector. Biofuels, Bioprod. Bioref. 7 (2), 193-206. DOI: 10.1002/bbb.1351.

Klein, S., 2014. Säger-Befragung im Rahmen des Laubholz-Innovationsverbunds. Cluster Forst und Holz in Bayern. Freising.

Klinglmair, M., Sala, S., Brandão, M., 2014. Assessing resource depletion in LCA: a review of methods and methodological issues. Int. J. Life Cycle Assess. 19 (3), 580-592. DOI: 10.1007/s11367-013-0650-9.

Klöpffer, W.; Grahl, B., 2009. Ökobilanz (LCA). Ein Leitfaden für Ausbildung und Beruf. Weinheim, Wiley-VCH.

Kollmann, F., 1982. Technologie des Holzes und der Holzwerkstoffe: Band 1. Berlin, Heidelberg, New York, Springer.

Levasseur, A., Lesage, P., Margni, M., Samson, R., 2013. Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment. J. Ind. Ecol. 17 (1), 117-128. DOI: 10.1111/j.1530-9290.2012.00503.x.

Mantau, U., Weimar, H., Kloock, T., 2012. Standorte der Holzwirtschaft - Holzrohstoffmonitoring. Altholz im Entsorgungsmarkt - Aufkommens- und Vetriebsstruktur 2010. Abschlussbericht. Universität Hamburg, Zentrum Holzwirtschaft, Arbeitsbereich Ökonomie der Holz- und Forstwirtschaft. Hamburg.

Meinlschmidt, P., Berthold, D., Briesemeister, R., 2013. Neue Wege der Sortierung und Wiederverwertung von Altholz. in: Recycling und Rohstoffe, Berliner Recycling- und Rohstoffkonkurrenz, Bd. 6. Neuruppin. TK-Verlag, 153-176.

Pawelzik, P., Carus, M., Hotchkiss, J., Narayan, R., Selke, S., Wellisch, M. et al., 2013. Critical aspects in the life cycle assessment (LCA) of bio-based materials - Reviewing methodologies and deriving recommendations. Resour. Conserv. Recycl. 73, 211-228. DOI: 10.1016/j.resconrec.2013.02.006.

PLANCO Consulting GmbH (PLANCO); Bundesanstalt für Gewässerkunde (BAFG), 2007. Verkehrswirtschaftlicher und ökologischer Vergleich der Verkehrsträger Straße, Bahn und Wasserstraße. Zusammenfassung der Untersuchungsergebnisse. Essen.

Risse, M., Weber-Blaschke, G., Richter, K., 2017. Resource efficiency of multi-functional wooden cascade chains using LCA and exergy analysis. Resour. Conserv. Recycl. (accepted for publication).

Rivela, B., Moreira, M.T., Muñoz, I., Rieradevall, J., Feijoo, G., 2006. Life cycle assessment of wood wastes: A case study of ephemeral architecture. Sci. Total Environ. 357 (1-3), 1-11. DOI: 10.1016/j.scitotenv.2005.04.017.

Røyne, F., Peñaloza, D., Sandin, G., Berlin, J., Svanström, M., 2016. Climate impact assessment in life cycle assessments of forest products. Implications of method choice for results and decision-making. J. Clean. Prod. 116, 90-99. DOI: 10.1016/j.jclepro.2016.01.009.

Rüter, S., Diederichs, S., 2012. Ökobilanz-Basisdaten für Bauprodukte aus Holz. Hamburg (Arbeitsbericht aus dem Institut für Holztechnologie und Holzbiologie, 2012/1).

Sathre, R., Gustavsson, L., 2006. Energy and carbon balances of wood cascade chains. Resour. Conserv. Recycl. 47 (4), 332-355. DOI: 10.1016/j.resconrec.2005.12.008.

Schaubroeck, T., Alvarenga, R.A.F., Verheyen, K., Muys, B., Dewulf, J., 2013. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain. Environ. Sci. Technol. 47 (23), 13578-13586. DOI: 10.1021/es4046633.

Schaubroeck, T., Deckmyn, G., Giot, O., Campioli, M., Vanpoucke, C., Verheyen, K. et al., 2016. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios: a case

study of a Scots pine forest. J. Environ. Manage. 173, 79-94. DOI: 10.1016/j.jenvman.2016.03.005.

Schulte, A., Becker, M., Lückge, F.-J., Lehner, L., Röder, H., Baums, M. et al., 2003. Clusterstudie Forst & Holz NRW - Gesamtbericht. Hg. v. Ministerium für Schule, Wissenschaft und Forschung NRW und Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz NRW.

Seintsch, B., 2011. Stellung der Holzrohstoffe in der Kostenstruktur des Holz- und Papiergewerbes in Deutschland. Johann Heinrich von Thünen-Institut. Hamburg (Arbeitsbericht aus dem Institut für Ökonomie, 3/2011).

Sikkema, R., Junginger, M., McFarlane, P., Faaij, A., 2013. The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy - A case study on available forest resources in Canada. Environ. Sci. Policy 31, 96-108. DOI: 10.1016/j.envsci.2013.03.007.

Sirkin, T., Houten, M. ten, 1994. The cascade chain. Resour. Conserv. Recycl. 10 (3), 213-276. DOI: 10.1016/0921-3449(94)90016-7.

Speckels, L., 2001. Ökologischer Vergleich verschiedener Verwertungs- und Entsorgungswege für Altholz. Dissertation, Hamburg.

Steinmann, Z.J.N., Schipper, A.M., Hauck, M., Huijbregts, M.A.J., 2016. How many environmental impact indicators are needed in the evaluation of product life cycles? Environ. Sci. Technol. 50 (7), 3913-3919. DOI: 10.1021/acs.est.5b05179.

Swart, P., Alvarenga, R.A.F., Dewulf, J., 2015. Abiotic resource use. in: Michael Z. Hauschild and Mark A. J. Huijbregts (Eds.): Life Cycle Impact Assessment. Springer (LCA Compendium - The Complete World of Life Cycle Assessment), 247-269.

Szargut, J.; Morris, D. R.; Steward, F. R., 1988. Exergy analysis of thermal, chemical and metallurgical processes. New York, Hemisphere.

Taelman, S.E., Meester, S. de, Schaubroeck, T., Sakshaug, E., Alvarenga, R.A.F., Dewulf, J., 2014. Accounting for the occupation of the marine environment as a natural resource in life cycle assessment. An exergy based approach. Resour. Conserv. Recycl. 91, 1-10. DOI: 10.1016/j.resconrec.2014.07.009.

Talens Peiró, L., Villalba Méndez, G., Sciubba, E., Gabarrell i Durany, X., 2010. Extended exergy accounting applied to biodiesel production. Energy 35 (7), 2861-2869. DOI: 10.1016/j.energy.2010.03.015.

Thonemann, N., Schumann, M., 2016. Environmental impacts of wood-based products under consideration of cascade utilization. A systematic literature review. J. Clean. Prod. (In press). DOI: 10.1016/j.jclepro.2016.12.069.

Trübswetter, T., 2009. Holztrocknung: Verfahren zur Trocknung von Schnittholz - Planung von Trockenanlagen. 2. Aufl. München, Hanser.

DIN EN ISO 14044:2006-10, 2006. Umweltmanagement - Ökobilanz - Anforderungen und Anleitungen (ISO 14044:2006). Berlin, Beuth.

DIN EN ISO 14040:2009-11, 2006. Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen (ISO 14040:2006). Berlin, Beuth.

UNEP, 2014. Assessing global land use: balancing consumption with sustainable supply. A report of the working group on land and soils of the international resource panel. S. Bringezu, H. Schütz, W. Pengue, M. O'Brien, F. Garcia, R. Sims et al.

Wagner, F.G., Puettmann, M.E., Johnson, L.R., 2009. Life cycle inventory of inland northwest softwod lumber manufactruing: CORRIM. Phase II, final report module B.

Werner, F., 2014a. Lath, softwood, raw, kiln drying to u=10% - CH. Ecoinvent 3.3 dataset documentation.

Werner, F., 2014b. Sawing, softwood - CH. Ecoinent 3.3 dataset documentation.

Werner, F., 2015. Bark chips production, softwood, at sawmill - CH. Ecoinvent 3.3 dataset documentation.

Werner, F., Althaus, H.-J., Richter, K., Scholz, R.W., 2007. Post-consumer waste wood in attributive product LCA. Int. J. Life Cycle Assess. 12 (3), 160-172. DOI: 10.1065/lca2006.05.249.

Werner, F., Richter, K., 2007. Wooden building products in comparative LCA. A literature review. Int. J. Life Cycle Assess. 12 (7), 470-479. DOI: 10.1065/lca2007.04.317.

Werner, S., 2016. European district heating price series. Report 2016:316. ENERGIFORSK.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., 2016. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21 (9), 1218-1230.