

Module Catalog

B.Sc. Molecular Biotechnology
TUM School of Life Sciences
Technische Universität München

www.tum.de/ www.ls.tum.de/ls/startseite/

Module Catalog: General Information and Notes to the Reader

What is the module catalog?

One of the central components of the Bologna Process consists in the modularization of university curricula, that is, the transition of universities away from earlier seminar/lecture systems to a modular system in which thematically-related courses are bundled together into blocks, or modules.

This module catalog contains descriptions of all modules offered in the course of study. Serving the goal of transparency in higher education, it provides students, potential students and other internal and external parties with information on the content of individual modules, the goals of academic qualification targeted in each module, as well as their qualitative and quantitative requirements.

Notes to the reader:

Updated Information

An updated module catalog reflecting the current status of module contents and requirements is published every semester. The date on which the module catalog was generated in TUMonline is printed in the footer.

Non-binding Information

Module descriptions serve to increase transparency and improve student orientation with respect to course offerings. They are not legally-binding. Individual modifications of described contents may occur in praxis.

Legally-binding information on all questions concerning the study program and examinations can be found in the subject-specific academic and examination regulations (FPSO) of individual programs, as well as in the general academic and examination regulations of TUM (APSO).

Elective modules

Please note that generally not all elective modules offered within the study program are listed in the module catalog.

Index of module handbook descriptions (SPO tree)

Alphabetical index can be found on page 210

[20191] Molecular Biotechnology Molekulare Biotechnologie	
Required Courses Pflichtmodule	7
[CH0948] Inorganic Chemistry Anorganische Chemie	7 - 10
[MA9609] Advanced Mathematics and Statistics Höhere Mathematik und	11 - 13
Statistik	
[CH0936] Biochemistry 1 Biochemie 1	14 - 18
[PH9034] Physics for Life Sciences Physik für Life Sciences	19 - 22
[WZ0266] Biochemistry 2 Biochemie 2	23 - 26
[WZ2036] Physiology of Humans, Animals and Plants Physiologie:	27 - 29
Human, Tier, Pflanze	
[LS20000] Introduction to Microbiology Grundlagen der Mikrobiologie	30 - 32
[CH0109] Composition and Structure of Organic Compounds Aufbau	33 - 35
und Struktur organischer Verbindungen	
[WZ2002] Introduction to Genetics Einführung in die Genetik	36 - 37
[CH0655] Physical Chemistry 1 Physikalische Chemie 1	38 - 40
[WZ2634] Introduction to Bioinformatics I Bioinformatik für	41 - 42
Biowissenschaften I	
[CH0115] Reactivity of Organic Compounds Reaktivität organischer	43 - 44
Verbindungen	
[CH0221] Internship Biological Chemistry Praktikum Biologische Chemie	45 - 48
[WZ2009] Biochemical Analytics Biochemische Analytik	49 - 50
[CH0950] Biochemistry 3 Biochemie 3	51 - 53
[WZ2644] Introduction to Biotechnology Einführung in die Biotechnologie	54 - 56
[ME2522] General Pharmacology for Students of Biological Sciences	57 - 58
Allgemeine Pharmakologie für Studierende der Biowissenschaften	
[MW2094] Biochemical Engineering Bioverfahrenstechnik	59 - 60
[WZ2033] Proteins, Protein-Engineering and Immunological Processes	61 - 63
Proteine, Protein-Engineering und Immunologische Prozesse	
[WZ2645] Cell Culture and Molecular Genetics Zellkultur und	64 - 65
Molekulargenetik	
[WZ2034] Molecular Bacterial Genetics and Metabolic Engineering	66 - 67
Molekulare Bakteriengenetik und Metabolic Engineering	
[WZ2035] Regulatory and economic basics of biotechnology Rechtliche	68 - 71
und wirtschaftliche Grundlagen der Biotechnologie	
[CH0665] Physical Chemistry 2 Physikalische Chemie 2	72 - 74
Elective Modules Wahlmodule	75
[LS20025] Applied Data Science in the Life Sciences Applied Data	75 - 77
Science in the Life Sciences	
[LS20002] Introduction to Epigenetics Einführung in die Epigenetik	78 - 80
[MA9607] Applied statistics Angewandte Statistik	81 - 82

[WZ2692] Microbial Ecology and Microbiomes Mikrobielle Okologie und	83 - 84
Mikrobiome	
[CH0953] Bioinorganic Chemistry Bioanorganische Chemie	85 - 87
[WZ2450] Introduction to Mycology Einführung in die Mykologie	88 - 89
[WZ2516] Introduction to Plant Developmental Genetics Einführung in die	90 - 91
Entwicklungsgenetik Pflanzen	
[WZ5012] Hygienic Processing 2 - Aseptic and Sterile Processing	92 - 93
Hygienic Processing 2 - Aseptik und Sterilprozesstechnik	
[IN8003] Introduction to Informatics Informatik	94 - 95
[WZ2646] Molecular Plant Biology and Plant Breeding Molekulare	96 - 97
Pflanzenbiologie und Züchtung	
[WZ2457] Neurobiology Neurobiologie	98 - 99
[WZ0402] Structural Bioinformatics Strukturbioinformatik [Structural	100 - 102
Bioinformatics]	
General Education Subject Allgemeinbildendes Fach	103
[WZ2674] Challenges of Biomedicine. Social, Political and Ethical	103 - 105
Aspects of Medical Biology Herausforderungen der Biomedizin. Soziale,	
poltische und ethische Dimension der medizinischen Biologie	
[WZ2457] Neurobiology Neurobiologie	106 - 107
[ED0180] Philosophy and Social Sciences of Technology Philosophie	108 - 109
und Sozialwissenschaft der Technik	
[ED0179] Technology, Nature and Society Technik, Natur und Gesellschaft	110 - 111
[MCTS9003] Technology and Democracy Technik und Demokratie	112 - 113
[WI000820] Marketing and Innovation Management Marketing and	114 - 116
Innovation Management	
[WI001088] Advanced Modeling, Optimization, and Simulation in	117 - 119
Operations Management Advanced Modeling, Optimization, and Simulation	
in Operations Management [AMOS]	
[WZ3096] Scientific Computing for Biological Sciences with Matlab	120 - 121
Scientific Computing for Biological Sciences with Matlab	
Carl-von-Linde Akademie	122
[CLA30803] Cognitive Science: Thinking, Perceiving, and Knowing	122 - 123
Cognitive Science: Denken, Erkennen und Wissen	
[CLA30202] Mind - Brain - Machine Geist - Gehirn - Maschine	124 - 125
[CLA40202] Mind - Brain - Machine Geist - Gehirn - Maschine	126 - 127
[CLA31900] Lecture Series Environment - TUM Vortragsreihe Umwelt -	128 - 129
TUM	
[CLA11216] Agile project management hands-on Agile project	130 - 131
management hands-on	
[CLA11317] Interdisciplinary Lecture Series Environment: Politics and	132 - 133
Society Ringvorlesung Umwelt: Politik und Gesellschaft	
[CLA20424] Intercultural Encounters Interkulturelle Begegnungen	134 - 135

[CLA21023] Passing Exams in Relaxed Mode Entspannt Prüfungen	136 - 137
bestehen	
Language Center Sprachenzentrum	138
[SZ0118] Arabic A1.1 Arabisch A1.1	138 - 139
[SZ0209] Chinese A1.1 Chinesisch A1.1	140 - 141
[SZ0210] Chinese A1.2 Chinesisch A1.2	142 - 143
[SZ0211] Chinese A2.1 Chinesisch A2.1	144 - 145
[SZ0218] Chinese - Business Chinese 1 Chinesisch -	146 - 147
Wirtschaftschinesisch 1	
[SZ0425] English - Introduction to Academic Writing C1 Englisch -	148 - 149
Introduction to Academic Writing C1	
[SZ0429] English - English for Scientific Purposes C1 Englisch -	150 - 151
English for Scientific Purposes C1	
[SZ0430] English - English in Science and Technology C1 Englisch -	152 - 153
English in Science and Technology C1	
[SZ0488] English - Gateway to English Master's C1 Englisch - Gateway	154 - 155
to English Master's C1	
[SZ0501] French A1.1 Französisch A1.1	156 - 157
[SZ0502] French A1.2 Französisch A1.2	158 - 159
[SZ0504] French A2.2 Französisch A2.2	160 - 161
[SZ0512] French B1/B2 - Conversation Course: French Society	162 - 163
Französisch B1/B2 - Cours de conversation: La société française	
[SZ0602] Italian A1.1 Italienisch A1.1	164 - 165
[SZ0605] Italian A1.2 Italienisch A1.2	166 - 167
[SZ0705] Japanese A1.1 Japanisch A1.1	168 - 169
[SZ07052] Japanese A1.1 + A1.2 Japanisch A1.1 + A1.2	170 - 171
[SZ0706] Japanese A1.2 Japanisch A1.2	172 - 173
[SZ1808] Korean A1.1 Koreanisch A1.1	174 - 175
[SZ1701] Norwegian A1 Norwegisch A1	176 - 177
[SZ1702] Norwegian A2 Norwegisch A2	178 - 179
[SZ0815] Portuguese - Portuguese for Spanish speakers A1 + A2	180 - 182
Portugiesisch - Português para hispanofalantes A1 + A2	
[SZ0901] Russian A1.1 Russisch A1.1	183 - 184
[SZ0902] Russian A1.2 Russisch A1.2	185 - 186
[SZ0909] Russian as language of origin from B1 Russisch als	187 - 189
Herkunftssprache ab B1	
[SZ1001] Swedish A1 Schwedisch A1	190 - 191
[SZ1002] Swedish A2 Schwedisch A2	192 - 193
[SZ1201] Spanish A1 Spanisch A1	194 - 195
[SZ1202] Spanish A2.1 Spanisch A2.1	196 - 198
[SZ1203] Spanish A2.2 Spanisch A2.2	199 - 201
[SZ1207] Spanish A1 + A2.1 Spanisch A1 + A2.1	202 - 204

[SZ1218] Spanish B1.1 Spanisch B1.1	205 - 206
Bachelor's Thesis Bachelor's Thesis	207
[WZ0160] Bachelor's Thesis incl. Colloquium Bachelor's Thesis mit	207 - 209
Abschlusskolloquium	

Required Courses | Pflichtmodule

Module Description

CH0948: Inorganic Chemistry | Anorganische Chemie

Version of module description: Gültig ab winterterm 2022/23

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
10	300	180	120

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird in Form von zwei Prüfungsleistungen (Gewichtung 1:1) erbracht: einer 90-minütigen Klausur und einer Laborleistung, bestehend aus einem kurzen Antestat (Dauer: 10 Min.) und der praktischen Ausarbeitung (Versuchsprotokoll im Umfang von 1-2 Seiten pro Versuch mit 15-minütigem Ergebnisgespräch).

In der Klausur wird überprüft, ob die Studierenden die erlernten Prinzipien der Allgemeinen und Anorganischen Chemie verstehen, wiedergegeben sowie deren Anwendung anhand einfacher Praxisbeispiele kurz beschreiben können. Ferner soll so das theoretische Verständnis des Atombaus und der Struktur von kovalenten, ionischen und metallischen Verbindungen demonstriert werden. Für die Klausur sind darüber hinaus grundlegende Fragestellungen zur Synthese und Reaktivität der behandelten Elemente und deren Verbindungen relevant, mit denen nachgewiesen wird, dass die Studierenden die theoretischen Grundlagen und chemischen Prinzipien verstanden haben.

Die Bearbeitung der Klausur erfordert vorrangig eigenständig formulierte Antworten, gegebenenfalls auch das Ankreuzen von vorgegebenen Mehrfachantworten.

Im Rahmen der Laborleistung sollen die Studierenden selbständig 8 - 12 Versuche zu qualitativen und quantitativen Analysen durchführen. Damit wird nachgewiesen, ob die Studierenden ausgewählte anorganische Stoffe unter Anwendung verschiedener Arbeitstechniken (z.B. Lösen, Ausfällen) und auf Grundlage der zugrundeliegenden chemischen Prinzipien, Reaktivitäten und Regeln (Säuren und Basen, Puffersysteme, Ionen, Löslichkeitsprodukt, Stöchiometrie Fällungsreaktionen, Redoxvorgänge - Oxidation und Reduktion) qualitativ und quantitativ in der Praxis analysieren können. Die Laborleistung umfasst hierzu ein 2-3 Fragen umfassendes Antestat. In diesem werden die für die Durchführung des Versuchs notwendigen theoretischen Grundlagen sowie die sicherheitsrelevanten Aspekte (z.B. Umgang mit konzentrierten Säuren und

Basen) vor Versuchsbeginn überprüft. Weiterer Bestandteil ist ein Versuchsprotoll, indem Ablauf und Ergebnisse des Versuchs/der Versuche sachgerecht dokumentiert werden, Interpretation und Einordnung der wesentlichen Erkenntnisse wird in einem kurzen Ergebnisgespräch (Dauer 15 Min.) am Ende des Semesters überprüft.

Klausur und Laborleistung müssen einzeln bestanden werden, um sowohl das theoretische Verständnis für die Prinzipien der Allgemeinen und Anorganischen Chemie als auch die praktisch-handwerklich chemischen Fertigkeiten zur lösungsorientierten Analyse von anorganische Stoffen erfolgreich nachzuweisen; beides gehört zum grundlegenden Rüstzeug in der Molekularen Biotechnologie und ist Voraussetzung für die weiterführende biochemische Ausbildung im Bachelorstudium. Ohne die in diesem Modul erworbenen Kompetenzen ist das weitere Studium nicht möglich (Theorie: Voraussetzung für das sicherheitsrelevante Arbeiten im Labor; Praxis: Handwerkszeug für nachfolgende Module, Basis für die Ausübung des Berufs für weiterführende Labortätigkeiten).

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Voraussetzung ist Interesse an Chemie als experimentelle Naturwissenschaft.

Content:

Das Modul besteht aus einer Vorlesung und einem Praktikum mit Seminar. Inhalte in der Vorlesung sind: Einführung/Geschichte der Chemie, Atomkern und Atombau, Atomtheorie, Grundlagen der chemischen Bindung, Metallbindung, Ionenbindung, Kovalente Bindung, Redoxreaktionen, Stöchiometrie, Säure-Base-Theorie, Elektrochemie, Chemisches Gleichgewicht, Grundlagen zu VSEPR, MO-Theorie, Ligandenfeldtheorie

Grundlegende Stoffkenntnisse zu Hauptgruppenelementen, Wasserstoff, Halogenwasserstoffe, Halogene, Katalyse, wichtige technische Verfahren.

Inhalt des Seminars und des Praktikums ist die Vermittlung von theoretischen und praktischen Kenntnissen zur biochemisch relevanten qualitativen Bestimmung (z.B. Nitrat, Phosphat) und quantitativen Bestimmung anorganischer Stoffe durch u.a. Säure-Base-Titration, Redoxtitration, Komplexometrie und Gravimetrie. Die zugrundeliegenden Reaktivitäten und chemischen Prinzipien (Säure-Base-Theorie, Komplexchemie, Redoxchemie und Löslichkeit) werden eingeübt und anhand praktischer Versuche wiederholt und vertieft.

Intended Learning Outcomes:

Nach der erfolgreichen Teilnahme sind die Studierenden in der Lage, die wesentlichen Konzepte der Allgemeinen und Anorganischen Chemie zu verstehen und auf einfache Beispiele selbständig anzuwenden. Die Studierenden verstehen den Aufbau des Periodensystems der Elemente und kennen das Vorkommen und die Herstellung der wichtigsten Hauptgruppenelemente. Sie können Konzepte wie das Massenwirkungsgesetz, die Theorie der chemischen Bindung, die Redoxstufen, die Ligandenfeldtheorie, die MO-Theorie etc. auf typische Beispiele anwenden und die Resultate analysieren. Die Studierenden erinnern sich nach der Teilnahme an dem Modul auf Grund der

vorgeführten Experimente an das chemische Verhalten der jeweiligen Elemente und deren Verbindungen.

Darüber hinaus sind die Studierenden in der Lage, einfache Grundoperationen (Herstellen und Arbeiten mit Standardlösungen, sauberes und präzises Arbeiten im analytischen Labor, bestimmte anorganische Stoffe unter Anwendung verschiedener Arbeitstechniken qualitativ und quantitativ unter Berücksichtigung der Sicherheitsaspekte zu analysieren. Sie verstehen die zugrundeliegenden chemischen Prinzipien und Reaktivitäten und können die Regeln der Säure-Base-, Redox-, Komplex- und Löslichkeitstheorie problemorientiert anwenden.

Teaching and Learning Methods:

Die Vorlesung erfolgt mittels Tafelanschrift parallel zu Projektionen. Durch Tafelanschrift lernen die Studierenden durch die Übertragung in Hefte chemische Strukturen und Formeln zu zeichnen. Dabei wird das räumliche Vorstellungsvermögen verbessert. Weiterhin wird die Geschwindigkeit der Vorlesung an die Geschwindigkeit und Erklärungsbedürfnisse der Studierenden angepasst, wodurch die Lernerfolge optimiert werden. Projektionsfolien werden über einen download-Bereich zur Verfügung gestellt. Zudem werden Videos in die Vorlesung eingebunden, um ein besseres Verständnis bestimmter Versuchsabläufe, Konzepte und Kristallstrukturtypen zu erlangen und die Lehrveranstaltung wird durch eLearing Instrumente begleitet. Die Einbindung von Experimentalvorführungen in die Veranstaltung veranschaulicht die theoretisch besprochenen Inhalte und die Reaktivität der behandelten Stoffklassen und Elemente und bildet eine Grundlage für eigenständige experimentelle Arbeiten. Die Inhalte des Praktikums werden durch Experimente vermittelt und durch Praktikumsberichte (Protokolle) vertieft. Experimente dienen der Verdeutlichung und als Anreiz das Studium einer experimentellen Wissenschaft erfolgreich weiter zu verfolgen. Aufgrund der unterschiedlichen Eingangsniveaus (Grund-/Leistungskurse) und der in der gymnasialen Oberstufe hauptsächlich organisch orientierten Ausbildung sollen Grundlagen für ein weiteres erfolgreiches Studium mit chemisch orientierten Inhalten vermittelt und gelegt werden. Darüber hinaus können durch Vorbereitungs- und Ergebnisbesprechungen offene Fragen geklärt und weiterführende Zusammenhänge und Aspekte aufgezeigt werden. Im begleitenden Seminar werden theoretische Grundlagen zur den praktischen Versuchen vermittelt und die Studierenden zum Studium der Literatur und der inhaltlichen Auseinandersetzung mit den Themen angeregt.

Media:

Experimente, Tafelanschrieb, Powerpointpräsentationen, Praktikumsskript

Reading List:

Chemie, Charles E. Mortimer (übersetzt), 6. Auflage, Georg Thieme Verlag Stuttgart, 1996; Anorganische Chemie, Erwin Riedel, 3. Auflage, de Gruyter Verlag, Berlin, 1994. Daniel C. Harris: Lehrbuch der quantitativen Analyse. Udo R. Kunze: Grundlagen der quantitativen Analyse.

Responsible for Module:

Kühn, Fritz; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Allgemeine und Anorganische Experimentalchemie (Vorlesung, 4 SWS)

Kühn F (Kubo T)

Analytisch-chemisches Grundpraktikum für Biochemie und Molekulare Biotechnologie (Praktikum, 3 SWS)

Storcheva O

Seminar zum Analytisch-chemischen Grundpraktikum für Biochemie und Molekulare Biotechnologie (CH0383) (Seminar, 1 SWS)

Storcheva O

For further information in this module, please click campus.tum.de or here.

MA9609: Advanced Mathematics and Statistics | Höhere Mathematik und Statistik

Version of module description: Gültig ab summerterm 2021

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
7	210	120	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfung ist schriftlich (120 Minuten) und findet nach dem ersten Semester statt. Die Lernergebnisse werden exemplarisch überprüft. Zu ausgewählten Inhalten der Lehrveranstaltung bearbeiten die Studierenden Aufgaben. Die Lösung der Aufgaben erfordert die Anwendung der erlernten und eingeübten Rechenschritte und Lösungsstrategien. Die Studierenden müssen Problemstellungen erkennen und einordnen, um dann geeignete Verfahren auszuwählen und anzuwenden

Repeat Examination:

Next semester

(Recommended) Prerequisites:

none

Content:

komplexe Zahlen; Folgen und Reihen; Differentialrechnung und Anwendungen; Elementare Funktionen und Anwendungen, Wachstum; Integralrechnung und Anwendungen; Lineare Gleichungssysteme und Matrizen; Lineare Abbildungen, Determinante, Eigenwerte, Eigenvektoren; Grundlagen der Vektoranalysis; Beschreibende Statistik (graphische Methoden, rechnerische Methoden); Bivariate Daten: Streudiagramm, Kleinstquadratmethode, Formeln für Achsenabschnitt und Steigung, Korrelationskoeffizient, Bestimmtheitsmass, Linearisierung; Wahrscheinlichkeitstheorie (Axiome der Wahrscheinlichkeit, Unabhängige Ereignisse, bedingte Wahrscheinlichkeit, Satz von Bayes, Zuvallsvariable, Verteilung, Dichte, Bernoulli-, Binomial-, Poisson-, Normalverteilung, Näherungsverteilung, Zentraler Grenzwertsatz); Schließende Statistik (Konfidenzintervall, Einstichprobentest für Lage und Anteil, Zweistichproben test für Lage und Anteil, Anpassungs-, Unabhängigkeits-, Homogenitätstest (Kontingenztafel), einfaktorielle Varianzanalyse, Post-Hoc-Test)

Intended Learning Outcomes:

Übergeordnetes Ziel der Lehrveranstaltung ist es, dass die Studierenden in der Lage sind mathematisch und statistisch formulierte Problemstellungen der Lebenswissenschaften zu erkennen und zu verstehen und selbst im Rahmen der vermittelten Kompetenzen zu formulieren. Die Studierenden sind in der Lage, zwischen beschreibender und schließender Statistik zu unterscheiden. Sie kennen die Bedeutung der Wahrscheinlichkeitstheorie als Grundlage für Verteilungen und Zufallsvariablen und können zugehörige empirische Verteilungen benennen. Die Studierenden kennen das allgemeine Prinzip eines Hypothesentests und sind so in der Lage Ergebnisse eines ihnen nicht bekannten Hypothesentests zu interpretieren und richtige Schlüsse ziehen. Die Studierenden sind in der Lage, die Zahl der beobachteten Merkmale und Skalenniveaus richtig zu erkennen und anhand dieser Charakteristika den Lerninhalten richtig zuordnen, Formeln und Vorgehensweisen richtig anwenden und richtige Schlüsse zu ziehen. Die Studierenden wissen um die Bedeutung von Statistikprogrammen und können ausgewählte Standardverfahren benennen und anwenden sowie die Ausgaben richtig zuordnen und interpretieren. Nach der Teilnahme an dem Modul kennen die Studierenden die komplexe Zahlenebene und können mit komplexen Zahlen rechnen. Sie sind in der Lage, komplexe Zahlen in kartesischer und polarer Darstellung darzustellen und anzuwenden. Die Studierenden können zwischen Folgen und Reihen unterscheiden, sie kennen die geometrische Reihe, können ein Kriterium für die Konvergenz angeben und den Grenzwert typischer Folgen ermitteln. Die Studierenden kennen elementare Funktionen und ihre Eigenschaften und ihre Anwendung als mathematische Modelle in den Lebenswissenschaften und können diese anwenden und interpretieren. Die Studierenden kennen die Differentiationsregeln und sind in der Lage, diese anzuwenden. Sie kennen das Taylorpolynom und das Newtonverfahren als Anwendung der Differentialrechnung. Es ist der Zusammenhang zwischen Differential- und Integralrechnung bekannt und kann angewendet werden. Die Studierenden kennen die Integrale elementarer Funktionen und können die Substitutionsregel und die partielle Integration anwenden. Die Studierenden kennen die Rechenregeln für Matrizen und Vektoren und können diese anwenden. Sie können zwischen Skalar- und Vektorprodukt unterscheiden und beides anwenden. Sie sind in der Lage, lineare Gleichungssysteme mit dem Gaußschen Eliminationsverfahren zu lösen und den Rang einer Matrix bestimmen und interpretieren. Sie können die Determinante einer Matrix bestimmen und kennen den Zusammenhang zwischen Determinante und dem Lösungsverhalten eines linearen Gleichungssystems. Sie können Eigenwerte und Eigenvektoren berechnen. Sie können die Grundzüge der Vektoranalysis erläutern und die hergeleiteten Formeln anwenden. Die Studierenden erkennen den Zusammenhang zwischen Dichte und Verteilung und können ihn im Zusammenhang mit der Integralrechnung im diskreten und endlichen Summen im diskreten Fall anwenden. Die Studierenden erkennen den Zusammenhang zwischen der Kleinstquadratmethode und der Differentialrechnung und können ihn in Beispielen anwenden.

Teaching and Learning Methods:

Es werden Vorlesungen und Übungen angeboten. Sowohl in den Vorlesungen als auch den Übungen werden anhand von Beispielen aus den Lebenswissenschaften die erarbeiteten Inhalte angewandt und geübt. Begleitend findet eine freie Übungsstunde statt, in der die Studierenden in kleinen Gruppen gemeinschaftlich Aufgaben lösen und auf Anfrage eine Hilfestellung erhalten. Es

finden Selbstkontrollen statt, die den Studierenden die Möglichkeit der Reflektion des Gelernten geben.

Media:

Klassischer Tafelvortrag, Übungen, rechnergestützte Simulationen

Reading List:

Ausgearbeitetes Skript für Vorlesung und Übungsbetrieb. Zusätzliches Material über eLearning-Plattform.

Responsible for Module:

Christina Kuttler (kuttler@ma.tum.de) Donna Ankerst (ankerst@tum.de) Johannes Müller (johannes.mueller@mytum.de) Hannes Petermeier (hannes.petermeier@tum.de)

Courses (Type of course, Weekly hours per semester), Instructor:

Zentralübung zur Höheren Mathematik 1 Wissenschaftszentrum Weihenstephan [MA9601] (Übung, 2 SWS)

Müller J, Petermeier J

Höhere Mathematik 1 Wissenschaftszentrum Weihenstephan [MA9601] (Vorlesung, 2 SWS) Müller J, Petermeier J

Übungen zu Einführung in die Statistik [MA9602] (Übung, 1 SWS) Petermeier J

Einführung in die Statistik [MA9602] (Vorlesung, 2 SWS) Petermeier J

Einführung in die Statistik WZW [MA9605] (Vorlesung mit integrierten Übungen, 2 SWS) Petermeier J, Aschl F

For further information in this module, please click campus.tum.de or here.

CH0936: Biochemistry 1 | Biochemie 1

Version of module description: Gültig ab summerterm 2018

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours: 240	Self-study Hours:	Contact Hours:
8		135	105

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Im Modul sind zwei Prüfungsleistungen, eine Klausur und eine Laborleistung zu erbringen. Die Gesamtnote des Moduls ergibt sich aus der Klausurnote und der Note der Laborleistung in der Gewichtung 1:1.

In der Klausur (90 Minuten) werden die erlernten theoretischen Grundlagen der Biochemie überprüft. Die Studierenden müssen ihr theoretisches Verständnis des grundlegenden Zellaufbaus und der grundlegenden chemischen Abläufe in der Zelle durch eigene Berechnungen, Textformulierungen oder durch Ankreuzen von vorgegebenen Mehrfachantworten darlegen. Dabei sollen sie z.B. Transkriptions- und Translationsvorgänge im Ablauf erklären und einem Kompartiment der Zelle zuordnen können. Sie sollen in offenen Fragen den Einsatz einfacher Molecular Modeling Verfahren erklären und grundlegende Fragen zur Methodik der modernen online-Informationsbeschaffung beantworten.

Im Rahmen der Laborleistung müssen die Studierenden 8 ausgewählte Versuche (je Versuch ein Versuchsnachmittag) zu molekularen Bausteinen der Zelle selbstständig durchführen. Damit wird nachgewiesen, ob die Studierenden in der Lage sind, industrietypische Arbeitsmethoden im Rahmen der Handhabung von Biomolekülen sowie deren Extraktion, Bestimmung und Analyse durchzuführen. Dabei ist eine saubere, exakte Durchführung wesentlich, um möglichst korrekte, experimentelle Ergebnisse zu erhalten.

Bestandteil der Laborleistung sind kurze Versuchsprotokolle zu jedem Einzelversuch (max. 5 Seiten). In diesen Protokollen zeigen die Studierenden, dass sie ein Laborjournal nach guter wissenschaftlicher Praxis führen können. Diese Protokolle werden versuchsbegleitend erstellt (in der Regel handschriftlich) und sind am Ende des Versuchs (oder spätestens am nächsten Versuchstag) abzugeben. Es soll die Zielsetzung, der Ablauf des Versuchs und die wesentlichen Ergebnisse sachgerecht dokumentiert werden sowie erste wissenschaftliche Interpretationen vorgenommen werden. Ebenso müssen spezifische sicherheitsrelevante Aspekte und gängige

methodische Fehlerquellen, auf die in den Versuchsvorschriften durch gezielte Fragen verwiesen wird, im Rahmen der Protokolle kurz erläutert werden.

In die Benotung der Laborleistung gehen Protokolle (50%) und die praktische Versuchsdurchführung (50%) ein. Unter dem Aspekt der praktischen Versuchsdurchführung werden die handwerklichen Fähigkeiten der Studierenden überprüft, anhand von qualitativen Kriterien wie z.B. Mengenausbeuten an DNA-Isolat, Sauberkeit der erzielten PCR-Produkte oder Proben-Sterilität und sicherheitsrelevanten Kriterien wie korrekter Umgang (wie das Kennen und Einhalten der Sicherheitsvorschriften und Betriebsanweisungen) mit Geräten, Materialien, Chemikalien oder Biostoffen, deren Entsorgung bewertet.

Klausur und Laborleistung müssen jeweils einzeln bestanden werden, weil die im Modul enthaltenen Lernergebnisse im vollen Umfang essentiell sind, das angestrebte Qualifikationsprofil eines Biochemikers zu erlangen. Einerseits sind dies die im Modul erlernten grundlegenden, handwerklichen, biochemischen Tätigkeiten und Fähigkeiten, die in Form einer laborpraktischen Leistung überprüft werden. Diese praktischen Kompetenzen sind nötig im beruflichen Alltag eines Biochemikers (Durchführung typischer moderner Arbeitsweisen etc.) und sind zudem sicherheitsrelevant für die weiterführende praktische Ausbildung (sicherer Umgang mit Bakterienkulturen etc.). Andererseits baut das weitere Curriculum des Studiengangs auf den hier vermittelten, theoretischen biochemischen Grundlagen (Zellaufbau, -funktionen, Nutzung fachspezifischer Literaturquellen etc.) auf, die in der Klausur überprüft werden. Ohne diese Grundlagen ist das erfolgreiche eigenständige Erarbeiten und das Verständnis von Fachwissen im weiteren Studium nicht sichergestellt.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Keine Voraussetzungen notwendig.

Content:

Theorie Block 1: Einführung in die Biochemie:

Moleküle des Lebens (Wasser; Nukleinsäuren; Aminosäuren; Zucker; Lipide); Struktur, Aufbau und Funktion von Biomolekülen; Aufbau der pro- und eukaryontischen Zelle; Organelle (Struktur und Funktion); Transkription; Translation; Ribosom (Aufbau und Funktion); Proteinsekretion; Proteinabbau; Grundlagen biochemischer Prozesse der Enzymologie.

Theorie Block 2: Moleküle am Computer:

Discovery Studio Viewer, Molecular Mechanics mit HyperChem, Berechnung der potentiellen Energie, Strukturoptimierung, Molekulardynamik, Periodic Boxes, Simulated Annealing

Informationsquellen im Internet: Cambridge Structural Database, Protein Database, Elektronische Zeitschriftenbibliothek, Chemical Abstracts (SciFinder), Beilstein und Gmelin (Reaxys), Andere:

Entrez, Pubmed, MedLine etc., Datenbanken für Protein wie CATH, PROSITE (Consensus Patterns), SwissProt (hier: E.C. Numbers), BRENDA.

Praxis: Die Zelle und ihre molekularen Bausteine

Versuch 1: Konzentrationsbestimmung von Proteinlösungen, UV/Vis-Spektroskopie (Lambert-Beer); Fluoreszenzspektroskopie; Bradford; Puffer; Titration und Herstellung von Phosphatpuffern; pH-Wertbestimmung.

Versuch 2: Zellaufbau; Mikroskopie (Aufbau und Funktion von Mikroskopen); Licht- und Fluoreszenz-Mikroskopie von Bakterien, Hefen und eukaryontischen Zellen; Zellfixierung; Zellfärbungen (Giemsa, Eosin, Safranin); Fluoreszenzfärbungen (DAPI; Mitotracker). Versuch 3: Zellwachstum; Teilungsrate, Wachstumskurven von Bakterien und Hefen; Kultivierungstechniken und Medien; Steriltechniken.

Versuch 4: Nukleinsäuren; Extraktionstechniken; Aufreinigung von DNA und RNA; Konzentrationsund Reinheitsbestimmung von DNA und RNA.

Versuch 5: PCR und qRT-PCR; Funktionsprinzip der PCR und qRT-PCR; Reverstranskription; Zeitlicher Verlauf der PCR-Reaktion; DNA-Gelelektrophorese; DNA-Nachweis- und Färbetechniken.

Versuch 6: Enzyme; Michaelis-Menten Model; Laktatdehydrogenase-Umsatzreaktion; Enzyminhibitoren; UV/Vis- Spektroskopie.

Versuch 7: Kristallisation von Proteinen; Ionenaustauscher-Chromatographie; Isolation und Anreicherung von Proteinen; Ultrafiltration; Kristallisation; Oberflächenmikroskopie von Proteinkristallen.

Versuch 8: Zucker und Polysaccharide; Umsatzreaktion der beta-Amylase; Dialyse; Nachweis von Stärke und Monosachariden.

Intended Learning Outcomes:

Nach der Teilnahme am Modul können die Studierenden den Aufbau von Zellen und die grundlegenden Abläufe innerhalb der Zelle beschreiben und einzelnen Zellkompartimenten zuordnen. Sie können grundlegende Vorgänge bzgl. der Informations- und Molekülflüsse sowie deren Zusammenhänge in der Zelle verstehen und zuordnen sowie die grundlegenden chemischen Prozesse der Zelle dazu beschreiben.

Die Studierenden können die Einsatzmöglichkeiten von einfachen Molecular Modeling Verfahren (z.B. der Strukturoptimierung, Molekulardynamik) einschätzen. Dabei sind sie in der Lage, erste Vorstellungen über die zwischenmolekularen Kräfte, die in der Biochemie zur molekularen Erkennung und Verarbeitung relevant sind, zu entwickeln. Sie kennen die Anwendung moderner IT-Techniken in der online-Informationsbeschaffung und sie können die entsprechenden biochemisch relevanten Datenquellen nennen.

Die Studierenden können eine Reihe von grundlegenden biochemischen, molekularbiologischen und spektroskopischen Methoden theoretisch beschreiben sowie praktisch durchführen. So verstehen sie klassische, in der Industrie übliche, Arbeitsweisen zur Beschreibung, Bestimmung und Handhabung von Zellkulturen und können diese praktisch ausführen (z.B. Konzentrationsbestimmung via UV/VIS, Mikroskopie, Zellfixierung/-färbung, Kultivierung, Steriltechniken etc.). Zudem können sie für einige Biomoleküle (DNA, Enzyme, Zucker/Stärke)

die standardmäßig genutzten Extraktionsmethoden und Analyseverfahren anwenden (z.B. PCR, Kristallisation etc.).

Für diese Methoden können die Studierenden zusätzlich Anwendungsbereiche und Einsatzgebiete zuordnen.

Teaching and Learning Methods:

Das Modul besteht aus einer zweiteiligen Vorlesung (1. Teil: Einführung in die Biochemie, 2 SWS; 2. Teil: Software und Datenbanken, 1 SWS) und einem Praktikum (3 SWS) mit vorbereitendem Seminar (1 SWS).

Die semesterbegleitende Vorlesung vermittelt durch Präsentation und Tafelanschrieb den Studierenden Fachkompetenzen aus den zwei differenzierten Themenblöcken. Im Vorlesungsteil "Einführung in die Biochemie" erlernen die Studierenden die theoretischen Grundlagen der Biochemie, die durch eigenes Literaturstudium (Lehrbücher) vertieft und erweitert werden müssen. Interesse an eigenständiger Vertiefung von präsentiertem Wissen soll durch die Diskussion von aktuellen Fragestellungen und unterschiedlichen wissenschaftlichen Interpretationen ebenso geweckt werden, wie die prinzipielle Erkenntnis, dass der Inhalt der Vorlesung nicht aus dogmatischen Wahrheiten sondern aus wissenschaftlich fundierte Thesen besteht. Im zweiten Themenblock der Vorlesungsveranstaltung, "Software und Datenbanken in der Biochemie", der parallel zum ersten stattfindet, lernen die Studierenden eine repräsentative Auswahl an Software zur Berechnung und Auswertung von Eigenschaften biochemischer Moleküle kennen und diese selbst zu nutzen. Ebenso wird den Studierenden die in der Wissenschaft momentan übliche Praxis der Literatur-, Sequenz- oder auch Proteininformationsbeschaffung und der Umgang mit den dazu nötigen Datenbanken vermittelt.

Im vorbereitenden "Seminar zum Biochemischen Grundpraktikum" werden theoretische Grundlagen (sowohl technisch als auch wissenschaftlich) der für die Experimente genutzten Methoden und Geräte vermittelt und die Studierenden zum Studium der zugehörigen Literatur und der inhaltlichen Auseinandersetzung mit den Themen der Versuche angeregt.

Das Praktikum findet in der zweiten Hälfte des Wintersemesters (circa Jan.-Feb.) statt, in der die Beschreibung, Bestimmung und Handhabung von Zellkulturen in der Praxis umgesetzt werden. Dabei müssen, zusammen mit einem Laborpartner, 8 Versuche zur Analytik von Zellen und ihrer Bausteine (siehe Inhalt) im Rahmen einer Laborleistung durchgeführt werden. Dafür stehen den Studierenden 16 Stunden pro Woche Laborbereiche mit entsprechender Ausrüstung zur Verfügung. Die Versuche müssen in der vorgeschriebenen Reihenfolge bearbeitet werden, da die erarbeiteten Methoden zum Teil aufeinander aufbauen. So wird zum Beispiel die Konzentrationsbestimmung mittels UV/VIS für die anschließende Auswertung der Wachstumsexperimente benötigt. Es wird jeweils ein Versuch an einem Nachmittag durchgeführt. Während des Praktikums müssen die Studierenden im Rahmen der Laborleistung Versuchsprotokolle erstellen, die Sie jeweils am Ende des Versuchstages oder spätestens am nachfolgenden Versuchstag abgeben. Hiermit wird die Laborjournalführung nach guter wissenschaftlicher Praxis vermittelt und eingeübt.

Darüber hinaus können durch Vorbereitungs- und Ergebnisbesprechungen offene Fragen geklärt und weiterführende Zusammenhänge und Aspekte aufgezeigt werden.

Media:

PowerPoint-Präsentationen, Computerprogramme, Tafelanschrieb, Praktikumsausrüstung

Reading List:

Vorlesungsskripte; Seminarskript, Praktikumsskript, J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemie, Spektrum Akademischer Verlag, Auflage 5 oder neuer. Molekularbiologie der Zelle; Alberts, Johnson, Lewis, Raff, Roberts, Walter; Wiley-VCH; Auflage 5 oder neuer

Responsible for Module:

Buchner, Johannes; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Biochemisches Grundpraktikum (CH0936) (Praktikum, 3 SWS) Buchner J, Groll M, Haslbeck M, Feige M, Nedialkova D, Reif B, Zeymer C

Seminar zum Biochemischen Grundpraktikum (CH0936) (Seminar, 1 SWS) Buchner J [L], Haslbeck M

Einführung in die Biochemie (CH0936) (Vorlesung, 2 SWS) Groll M, Zeymer C

Software und Datenbanken in der Biochemie (CH0936) (Seminar, 1 SWS) Huber E

For further information in this module, please click campus.tum.de or here.

PH9034: Physics for Life Sciences | Physik für Life Sciences

Version of module description: Gültig ab winterterm 2024/25

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours: 210	Self-study Hours:	Contact Hours:
7		90	120

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module exam consists of two parts. There will be a written exam of 90 minutes duration on the learning outcome from lecture and exercise. The skills and knowledge obtained in the lab course are tested in a lab exam with a written and graded lab report. The lab exam has a total duration of 240 minutes and contains the execution, documentation, analysis, and discussion of an experiment as well as the written answer to questions on the physical foundations, implementation, and setup of the experiment. The grade of the module exam is calculated from the partial grades with 4/7 of the written exam and 3/7 of the lab exam.

For example an assignment in the written exam might be (the exam is in German language): Ein Hochstrahlbrunnen spritzt das Wasser bis in eine Höhe von 140 Metern über der Düse. a) Berechnen Sie die Geschwindigkeit v0 (in km/h), mit der das Wasser aus der Düse strömen würde, wenn keine mechanische Energie verloren ginge. b) Berechnen Sie die Geschwindigkeit v1 (ebenfalls in km/h) des Wassers in halber Höhe. c) Erläutern Sie, warum der tatsächliche Wert der Geschwindigkeit des aufsteigenden Wassers mit ca. 200km/h für v0 über dem berechneten Wert liegt. d) Berechnen Sie welche Höhe die Fontäne erreichen würde, wenn v0 nur halb so groß wie der in Aufgabenteil a) berechnete Wert wäre. e) Pro Sekunde durchlaufen die 500 I Wasser die Düse. Untersuchen Sie, wie lange die Fontäne mit einer Energie von 10.000 Kalorien betrieben werden kann.

In the written exam the following learning aids are permitted: pocket calculator, hand written formulary (i.e. hand written notes on a sheet of the size A4. No copies.).

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

mathematical skills as required to pass the Abitur:

- · geometry
- · vector analysis
- · differential calculus
- · integral calculus

Content:

The module Physics for Life Sciences introduces students of life sciences to basic experimental physics.

The lecture Physics for Life Sciences covers the following topics:

- 1. Introduction, units and dimensions, experimental accuracy and errors
- 2. Mechanical motions, coordinate systems and ballistics, Newton's laws, frictional and inertial forces
- 3. Mechanical work, energy and power, kinetic and potential energy, energy conversion and energy conservation
- 4. Elastic and plastic collisions
- 5. Rotational motions, torque and moment of inertia, angular momentum, rotational kinetic energy, gyroscopic precessions
- 6. Harmonic oscillations, overlap of harmonic oscillations, damped and driven harmonic oscillators
- 7. Mechanical waves, wave equation, standing waves, interference and diffraction, acoustics, Doppler effect
- 8. Electrostatics, Coulomb low, electric fields, Gauss-Low, electric induction
- 9. Capacitors, current and resistance, electrical work and power, electrical circuits
- 10. Magnetism, magnetic force between conducting wires, magnetic fields in coils, Lorentz force
- 11. Magnetization, magnetic induction, electric motors, generators and transformers
- 12. Ray optics and optical imaging, detectors, refraction and reflection
- 13. Lenses and mirrors, aberrations, magnifiers, microscope and telescope
- 14. Wave optics, interference and diffraction of light, polarization and scattering

Content of the laboratory classes:

Measurements, data statistics and experimental accuracy

Mechanics (balance, oscillator and resonance)

Thermodynamics (van der Waals equation of state, heat conduction, fuel cell)

Optics (spectrophotometry, microscope)

Electrostatics (basic electrical circuits, alternating current, electrolysis)

Intended Learning Outcomes:

After successful completion of the module the students are able to:

- (1) understand the basic physical processes and to use basic mathematical and statistical methods
- (2) outline and calculate the evolution of mechanical motions, to use and apply the Newton's laws, to understand causes and effects of the varying physical and inertial forces
- (3) apply the principles for energy and momentum conservation
- (4) describe elastic and inelastic collisions
- (5) describe rotational motions, to calculate and apply the moment of force and inertia, angular momentum and rotational kinetic energy

- (6) describe and calculate various mechanical oscillations, including damped and driven oscillators
- (7) describe mechanical waves, including their interference and diffraction. To have knowledge on acoustics and Doppler effect
- (8) apply the main principles of electrostatics and to use the Coulomb and Gauss low for calculate the electric fields and charge distributions
- (9) describe, calculate and use various capacitors, electrical current and resistance, electrical work and power, electrical circuits
- (10)understand the basic principles of magnetism, to calculate magnetic forces between conducting wires, magnetic fields in coils, and the Lorentz force
- (11) have basic knowledge on magnetization, magnetic induction, electric motors, generators and transformers
- (12) describe and use ray optics and optical imaging, detectors, refraction and reflection
- (13) describe and calculate optical systems containing lenses and mirrors, magnifiers, as well as microscopes and telescopes
- (14) understand the principles of wave optics, to describe and calculate interference and diffraction of light, polarization and scattering

Teaching and Learning Methods:

The module consists of a lecture, a tutorial and a lab course.

Lecture: ex-cathedra teaching with demonstration experiments

Exercise to Physics for Life Sciences: students get problem sheets and try to solve these problems by themselves or in small groups in the first part of each tutorial session. After this phase sample solutions are presented by students or the lecturer and also possible alternative ways to solve to the problems are discussed. Following these tutorials will help the students to be prepared to solve the problems during the written exam.

The lecture and the tutorial are closely intertwined and the lecturers are in constant exchange. The lab class consists of a training phase and a practical exam. During the training phase in the lab students perform and describe seven different experiments, one of them is repeated in a slightly modified way on the day of the practical exam. The students work in small groups of two to three persons when carrying out the experiments and writing the lab report together. The students need to have performed all seven experiments and have successfully written all lab reports, which have to be positively rated by the tutor.

Media:

During the lecture a powerpoint presentation is used and some contents are explained using the blackboard. Additionally some example videos and experiments are shown during the lecture. For the exercises problem sheets are prepared. An e-learning course in Moodle exists. Presentation slides and problem sheets as well as sample solutions to problems which have already been discussed in the tutorials are available on this platform.

Reading List:

- Olaf Fritsche "Physik für Biologen und Mediziner" Springer Verlag
- Paul A. Tipler: Physik. Spektrum Lehrbuch, 3. korr. Nachdruck 2000

- D. Giancoli: Physik, Pearson Verlag, 1. Auflage 2011

Responsible for Module:

Herzen, Julia; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Physik für Life Sciences (Vorlesung, 2 SWS) Herzen J

Übung zu Physik für Life Sciences (Übung, 3 SWS) Herzen J [L], Wirtensohn S

Physikalisches Praktikum für Life Sciences (Semesterpraktikum) (Praktikum, 3 SWS) Iglev H [L], Allegretti F

For further information in this module, please click campus.tum.de or here.

WZ0266: Biochemistry 2 | Biochemie 2

Version of module description: Gültig ab summerterm 2019

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 240	Self-study Hours:	Contact Hours:
8		150	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Das Modul ,Biochemie 2' wird mit einer schriftlichen Modulprüfung in Form einer Klausur abgeschlossen.

Die neuerworbenen theoretischen und praktischen Kompetenzen werden durch eine 120minütige Klausur geprüft. Das Beantworten der Fragen erfordert teils eigene Formulierungen,
teils Auflistungen, vergleichende Tabellen, Interpretationen sowie Analysen und Skizzen. Die
Studierenden müssen zeigen, dass sie befähigt sind, Grundstrukturen wichtiger biochemischer
Stoffklassen und Prinzipien des Stoffwechsels zu verstehen. Außerdem zeigen die Studierenden,
dass sie grundlegende biochemische Labormethoden verstehen, beschreiben und anwenden
können sowie in der Lage sind, Versuchsergebnisse auszuwerten und zu interpretieren.
Im Rahmen des Laborpraktikums wird vor jedem Versuch durch ein Eingangstestat überprüft,
dass die Studierenden die notwendigen Fertigkeiten zur Durchführung der üblichen Techniken
und Labormethoden der Biochemie zur Analyse von Proteinen, Nukleinsäuren, Kohlenhydraten
und Lipiden besitzen und dass die Laborsicherheit für alle Teilnehmer gewährleistet ist. In
diesen Testaten (schriftlich oder mündlich, ca. 20 min), werden die Versuchsdurchführung und
theoretische Hintergründe abgefragt. Das Bestehen ist die Voraussetzung für die praktische
Versuchsdurchführung unter den gegebenen Laborsicherheitsstandarts.

Ergänzt wird die praktische Durchführung der Versuche durch eine schriftliche Dokumentation und Auswertung sowie die Diskussion der Ergebnisse hinsichtlich der zu erarbeitenden Erkenntnisse in Form eines Berichtes (d.h. jeweils ein Versuchsprotokoll pro Versuch und Gruppe). Dieser Bericht wird als Mid-Term-Leistung erbracht. Hierzu werden die insg. 12 Versuchsprotokolle anhand von Kriterien bewertet, die bei der Einführungsveranstaltung zu Beginn des Praktikums besprochen werden. Aus den 12 Einzelbewertungen wird eine gemittelte Note für die Mid-Term-Leistung berechnet.

Ist die Note der Mid-Term-Leistung besser als die Note der schriftlichen Modulprüfung, wird die Gesamtnote aus dem gewichteten Mittel der Note der Klausur und der Note der Mid-Term-Leistung berechnet (Gewichtung: Klausur 66 % / Mid-Term-Leistung 33 %). Diese Bonusregelung

hat keinen Einfluss auf das Bestehen der Modulprüfung. Bei der Wiederholung einer nicht bestandenen Modulprüfung kann die Mid-Term-Leistung jedoch erneut berücksichtigt werden.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Es werden keine anderen Module als Teilnahmebedingung vorausgesetzt. Theoretische und praktische Kenntnisse der Grundlagen der Biochemie werden empfohlen.

Content:

In der Vorlesung (a 90 min) werden grundlegende Aspekte zu folgenden Themengebieten der Biochemie vermittelt:

- Energetik des Stoffwechsels
- Enzymkinetik
- Stoffwechselwege (u.a. Glycolyse, Zitronensäurecyclus, Atmungskette)
- beteiligte biochemische Reaktionen
- · Lipide und Lipidstoffwechsel
- Aufbau biologischer Membranen
- · Kohlenhydrate und Kohlenhydratstoffwechsel
- Aminosäurestoffwechsel
- · Harnstoffzyklus

Im Praktikum werden grundlegende Arbeitstechniken und -methoden im Rahmen von Laborexperimenten mit Schwerpunkt Proteinbiochemie und Enzymologie unter inhaltlichem Bezug zur "Biochemie 2"-Vorlesung vemittelt:

- gekoppelter enzymatisch-optischer Test zu Quantifizierungs- und Nachweiszwecken
- · Aminosäure- und Peptidanalytik
- Dünnschicht- und Ionenaustauschchromatographie
- Titrationskurven von Aminosäuren
- Absorptionsspektroskopie (UV/VIS)
- Ellman-Assay auf Thiolgruppen
- Gelfiltrations-Chromatographie
- SDS- und native Polyacrylamidgelelektrophorese
- Methoden zur Proteinkonzentrationsbestimmung
- ELISA
- Enzymregulation durch allosterische und kovalente Modifikation
- · Michaelis/Menten-Kinetik

Intended Learning Outcomes:

Nach der erfolgreichen Teilnahme an dem Modul sind die Studierenden in der Lage, die zellulären Stoffwechselwege und die beteiligten biochemischen Reaktionen zu verstehen und zu beschreiben. Dazu zählen die Energetik des Stoffwechsels, die Stoffklassen der Lipide sowie der Kohlenhydrate als Grundlage für den Membranaufbau, der Stoffwechsel von Lipiden, Kohlenhydraten und Aminosäuren einschließlich des Harnstoffzyklus. Darüber hinaus verstehen

die Studierenden die Stoffflüsse innerhalb der Zelle und können Abbau- und Aufbaureaktionen von Biomolekülen wiedergeben und deren Zusammenhänge erklären. Weiterhin sind die Studierenden in der Lage, grundlegende biochemische Labormethoden und -techniken zur Analyse von Proteinen, Kohlenhydraten und Lipiden zu verstehen und praktisch anzuwenden. Dazu zählen enzymatische, chromatographische, elektrophoretische, spektroskopische und immunchemische Verfahren.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung und einem Praktikum. In der Vorlesung werden die Inhalte mit Powerpoint-Folien (inklusive Abbildungen, Animationen und evtl. Videos) vermittelt. Durch den Vortrag des Dozierenden ist ein stufenweiser Aufbau der Modulinhalte (Grundlagen zu weiterführenden Inhalten) möglich. Die Vermittlung der Inhalte kann dem Lerntempo der Studierenden angepasst werden. Durch Fragen des Dozierenden an die Zuhörerschaft sollen das Wissen gefestigt und die Studierenden zum selbständigen Literaturstudium angeregt werden. Für die Nacharbeit der Vorlesungsinhalte wird das Studium einschlägiger Fachliteratur empfohlen. Das Praktikum findet in der Regel an einem Halbtag pro Woche statt. Dabei müssen, zusammen mit einem Laborpartner, 12 proteinbiochemische Versuche durchgeführt werden. Krankheitsbedingt verpasste Einzelversuche können im gegebenen Rahmen während des Praktikums nachgeholt werden. Den Studierenden stehen Laborbereiche mit entsprechender Ausrüstung für die Versuche zur Verfügung. Die Versuche müssen in der vorgeschriebenen Reihenfolge bearbeitet werden, da die erarbeiteten Methoden zum Teil aufeinander aufbauen. Es wird jeweils ein Versuch an einem Halbtag durchgeführt.

Während des Praktikums müssen die Studierenden ein Protokoll zur Dokumentation ihrer Ergebnisse nach guter wissenschaftlicher Praxis führen. Vorbereitungs- und Ergebnisbesprechungen dienen zur Klärung offener Fragen und weiterführender Zusammenhänge und Aspekte in Verbindung mit den Inhalten der Vorlesung.

Media:

In der Vorlesung werden die Inhalte mit Powerpoint-Folien vermittelt. Die Folien der Vorlesung werden den Studierenden zur Verfügung gestellt.

Für das Praktikum gibt es ein Skript, das online abrufbar ist und dessen Passwort in der Vorbesprechung bekannt gegeben wird.

Reading List:

Berg, J.M., Tymoczko, J.L., Gatto jr., G.J., Stryer, L., Biochemie. Spektrum Akademischer Verlag; 8. Auflage, 2017

Lehninger, A.L., Nelson, D.L, Cox, M.M., Lehninger Principles of Biochemistry: International Edition, WH Freeman; 7th Edition, 2017

Voet, D.J., Voet, J.G., Pratt, C.W., Lehrbuch der Biochemie, Wiley-VCH, 3. Auflage, 2019

Responsible for Module:

Skerra, Arne; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Biochemie 2: Reaktionswege und Stoffwechsel (Vorlesung, 2 SWS) Schlapschy M

Proteinchemisches Grundpraktikum (Praktikum, 4 SWS) Skerra A, Eichinger A, Schlapschy M, Anneser M, Mayrhofer P, Mirwald A, Aigner M For further information in this module, please click campus.tum.de or here.

WZ2036: Physiology of Humans, Animals and Plants | Physiologie: Human, Tier, Pflanze

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
8	240	150	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Das Modul wird mit einer schriftlichen Klausur (90 min.) abgeschlossen. In der Klausur zeigen die Studierenden, dass sie sich grundlagen- und methodenorientierte Kenntnisse zur Funktion tierischer und pflanzlicher Organismen und deren physiologischer Leistungen erworben haben und diese beschreiben, interpretieren und auf ähnliche Sachverhalte übertragen können. Zudem demonstrieren die Studierenden in der schriftlichen Prüfung, dass sie in der Lage sind, dass erlernte Wissen zu strukturieren und die wesentlichen Aspekte darzustellen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Content:

- Grundlagen der Physiologie: Gleichgewichte, Gradienten, Energieformen
- Physiologische Forschungsgebiete, Methoden, Geschichte
- Grundlagen der Erregungsphysiologie bei Nerven und Muskeln
- Sinnesphysiologie
- Organisation und Verarbeitung im Zentralnervensystem der Tiere
- Atmung, Kreislauf, Thermoregulation
- Stoffwechselphysiologie mit den Themenkreisen: pflanzliche Organisationsformen
- Allgemeiner Bau und Funktion von Pflanzen
- · Ernährung, Energiestoffwechsel, Exkretion und Wasserhaushalt
- Hormonsystem
- Zellbau und Gewebestruktur
- Organe und Ihre Funktionen

Photosynthese und sekundäre Pflanzenstoffe

Intended Learning Outcomes:

Nach der Teilnahme an dem Modul besitzen die Studierenden wissenschaftlich fundierte, grundlagen- und methodenorientierte Kenntnisse zur Funktion tierischer Organismen und zu physiologischen Leistungen der Pflanze.

Die Studierenden erwerben folgende Kompetenzen:

- Zentrale Fragestellungen der Tier-, Human- und Pflanzenphysiologie zu erkennen sowie fachliche Frage selbst zu entwickeln.
- Forschungsergebnisse der Tier-, Human- und Pflanzenphysiologie angemessen darzustellen und in ihrer fachlichen Bedeutung und Reichweite einzuschätzen.
- Die Funktion des tierischen und eigenen, humanen Körpers zu beurteilen. Hierzu zählt das Wissen um die Regeln der Tagesrhythmik und des Lernens
- Wissenschaftlich fundierte Einblicke in die zellulären Prozesse der Pflanze und deren Funktion für den pflanzlichen Organismus bzw. deren Wirken auf Mensch und Umwelt.
- Das erworbene Wissen auf vertiefte fachliche Fragestellungen anzuwenden.

Teaching and Learning Methods:

Die Lehr- und Lernformen dieses Modul sind Vorlesung, Literaturstudium und Vortrag. In der Vorlesung werden die theoretischen Grundlagen zu verschiedenen physiologischen Prozessen umfassend erläutert und durch Präsentationen visuell aufbereitet. Durch das angeregte und geförderte Literaturstudium werden die Studierenden unterstützt, sich mit den gelehrten stofflichen Inhalten auseinanderzusetzen, eigene Frage zu entwickeln und die Zusammenhänge zu begreifen. Anhand von Vorträgen werden thematische Schwerpunkte beleuchtet und weiter vertieft.

Media:

Anhand von Präsentation mit Beamer können physiologische Abläufe auch in kleinen Videosequenzen deutlich dargestellt werden. Dadurch und auch mit grafisch ausgearbeiteten Darstellungen können die Schritte einzelner Prozesse auf einprägsame Art den Studierenden verständlich gemacht werden. Zusätzlich werden an der Tafel Sachverhalte erläutert. Das Skript dient dazu die besprochenen Themen nochmals in kompakter Form wiederholen zu können und auch sich währende der Lehrveranstaltungen bereits eigene Notizen hinzufügen zu können.

Reading List:

Weiler und Nover, Allgemeine und molekulare Botanik, Thieme Verlag, * Raven, Evert, Eichhorn:

Biologie der Pflanzen. De Gruyter Verlag

Moyes und Schulte: Tierphysiologie, Pearson Verlag

Heldmaier, Neuweiler: Vergleichende Tierphysiologie, 2 Bd, Springer-Verlag Müller und Frings: Tier- und Humanphysiologie. Eine Einführung, Springer Verlag

Eckert: Tierphysiologie, Thieme Verlag

Penzlin: Lehrbuch der Tierphysiologie, Fischer-Verlag

Responsible for Module:

Zehn, Dietmar; Prof. Dr.med.

Courses (Type of course, Weekly hours per semester), Instructor:

Einführung Pflanzenwissenschaften [WZ2004] (Vorlesung, 2 SWS) Hammes U, Schwechheimer C

Human- und Tierphysiologie (Vorlesung, 4 SWS) Luksch H, Klingenspor M, Zehn D, Pfaffl M For further information in this module, please click campus.tum.de or here.

LS20000: Introduction to Microbiology | Grundlagen der Mikrobiologie

Version of module description: Gültig ab winterterm 2021/22

Module Level: Bachelor	Language: German	Duration: two semesters	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
6	180	105	75

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Eine Klausur (90 min) dient der Überprüfung der im Modul erworbenen Kompetenzen. Die Studierenden zeigen in der Klausur, ob sie in der Lage sind, das erlernte Wissen zu strukturieren und die wesentlichen Aspekte darzustellen. Sie sollen die erarbeiteten Informationen beschreiben, interpretieren und sinnvoll kombinieren können. Die Beantwortung der Prüfungsfragen erfordert auch in den Übungen erarbeitete Kompetenzen, so dass hier theoretisches Wissen mit praktischen Kenntnissen vernetzt wird. Für den erfolgreichen Abschluss des Moduls muss zusätzlich eine Laborleistung (Studienleistung, unbenotet) bestanden werden. Die Modulnote entspricht der Klausurnote.

Die erlernten mikrobiologischen Arbeitstechniken und ihrer Anwendung auf neue Fragestellungen sollen mit den theoretischen Informationen verbunden und auf ähnliche Sachverhalte übertragen werden können . Die Studierenden führen selbstständig praktische Versuche im Labor durch. Zur Kontrolle des Verständnisses sowie der Fähigkeit zur Beschreibung, Auswertung und Interpretation experimenteller Ergebnisse ist ein Protokoll anzufertigen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Grundlagenkenntnisse in Biologie (v.a. Zellbiologie und Genetik) werden erwartet. Zum besseren Verständnis der Vorlesung sind Vorkenntnisse in anorganischer und organischer Chemie und Biochemie erforderlich.

Content:

Im Rahmen der Vorlesung Allgemeine Mikrobiologie werden Grundkenntnisse über Mikroorganismen, im Besonderen über prokaryotische Mikroorganismen, vermittelt. Im Vergleich zu den Eukaryoten werden die Vielfalt und besonderen Eigenschaften der Bakterien und Archaeen herausgearbeitet. Schwerpunkte liegen im Bereich der Zytologie, Wachstums-, Ernährungs- und

Stoffwechselphysiologie. Die Vielfalt der Mikroorganismen, ihre zentrale Bedeutung für globale Stoffkreisläufe, ihre Wechselwirkung mit anderen Lebewesen (Symbiosen, Pathogenität) und ihre Anwendung in biotechnologischen Verfahren werden anhand von Beispielen ebenfalls behandelt. In der Vorlesung zu den Mikrobiologischen Übungen werden insbesondere die Hintergründe und theoretischen Kenntnisse zu den durchgeführten Experimenten vermittelt.

Die theoretischen Anteile werden durch einen praktischen Anteil ergänzt. Hier werden v.a. einfache Laborfertigkeiten geübt, z. B. Keimzahlbestimmung mittels kultureller und mikroskopischer Verfahren;, Differenzierung von Bakterien anhand der Kolonie- und Zellmorphologie, endogener Enzyme und der Zellwand (Gram-Färbung); Isolierung von Mikroorganismen; Identifizierungsmethoden von Mikroorganismen durch Anreicherungsverfahren und Selektivnährmedien, biochemische und immunologische Identifizierung; Nachweis von Bakteriophagen aus der Umwelt (Plaque-Test). Ausführliche Inhaltsangaben auf der Homepage des Lehrstuhls für Intestinales Microbiom: https://www1.ls.tum.de/imb/home/

Intended Learning Outcomes:

Nach erfolgreicher Teilnahme am Modul besitzen die Studierenden das grundlegende theoretische Verständnis und Fachwissen über prokaryotische und eukaryotische Mikroorganismen. Weiterhin haben sie grundlegende mikrobiologische Arbeitstechniken erlernt und geübt. Sie haben gelernt, mikrobiologische Fragestellungen zu verstehen, die wichtigsten Techniken zu den grundlegenden Themen der Mikrobiologie nachzuvollziehen und anzuwenden, grundlegendes experimentelles Know-how inklusive Sicherheits- und Materialwissen (z.B. Beherrschung semisteriler Arbeitstechniken und phänotypische Identifizierung von Mikroorganismen) anzuwenden, sowohl bei bekannten eingeübten Versuchen wie auch bei unbekannten aus der Literatur zu erschließenden Versuchen. Darüber hinaus sind die Studierenden in der Lage, mikrobiologische Fragestellungen in den Grundzügen zu diskutieren und Laborprotokolle nach wissenschaftlichen Standards anzufertigen.

Teaching and Learning Methods:

Veranstaltungsform/Lehrtechnik: Vorlesung, Übung. Lehrmethode: Vortrag mit Lehrdialog; Übungsfragensammlung; Anleitungsgespräche, Demonstrationen, Experimente, Partnerarbeit, Ergebnisbesprechungen.

Lernaktivitäten: Studium von Vorlesungsskript, -mitschrift, Übungsskript und Literatur; Üben von labortechnischen Fertigkeiten und mikrobiologischen Arbeitstechniken; Zusammenarbeit mit Laborpartnerin; Anfertigung eines Protokolls.

Media:

Tafelanschrieb, Präsentationen mittels Powerpoint, Kurzvideos, experimentelles Kurslabor Skript für Vorlesungsmaterial und Übungsskript (Downloadmöglichkeit)

Reading List:

Das Modul ist nicht an ein einzelnes Lehrbuch angelehnt. Als Ergänzungsliteratur sind geeignet: Brock Mikrobiologie, Madigan, Bender, Buckley u.a., 15. Aktualisierte Auflage, 2020 K. Munk (Hsg.) Mikrobiologie, Georg Thieme Verlag, Stuttgart, 2. Aufl. 2018.

Madigan, M.T., J.M. Martinko, P. Dunlap, D. Clark. Brock Biology of Microorganisms, Pearson Education, 15. Edition, 2017

Responsible for Module:

Neuhaus, Klaus; PD Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Allgemeine Mikrobiologie (Vorlesung, 2 SWS) Liebl W

Übungen zur Allgemeinen Mikrobiologie - Kurs 1B, Gruppe 1 (Übung, 3 SWS) Neuhaus K [L], Neuhaus K

Übungen zur Allgemeinen Mikrobiologie - Kurs 2B, Gruppe 1 (Übung, 3 SWS) Neuhaus K [L], Neuhaus K

Übungen zur Allgemeinen Mikrobiologie - Kurs 2A, Gruppe 1 (Übung, 3 SWS) Neuhaus K [L], Neuhaus K

Übungen zur Allgemeinen Mikrobiologie - Kurs 1A, Gruppe 2 (Übung, 3 SWS) Neuhaus K [L], Neuhaus K For further information in this module, please click campus.tum.de or here.

CH0109: Composition and Structure of Organic Compounds | Aufbau und Struktur organischer Verbindungen

Version of module description: Gültig ab summerterm 2024

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Überprüfung der Lernergebnisse erfolgt mittels Klausur (90 Minuten). In dieser soll nachgewiesen werden, dass in begrenzter Zeit und ohne Hilfsmittel die Inhalte des Moduls (Struktur und Bindung, Alkane und Cycloalkane, Alkene, Alkine, Stereochemie, Alkylhalogenide, Alkohole, Ether, Carbonylverbindungen, Carbonsäuren, Aromaten) wiedergegeben und Fragestellungen zur Struktur und Reaktivität von organisch-chemischen Molekülen eigenständig bearbeitet werden können. Die Antworten erfordern eigene Berechnungen und Formulierungen und können teilweise die Auswahl von vorgegebenen Mehrfachantworten beinhalten.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

CH0106 "Biologie für Chemiker"

Content:

Der Inhalt des Moduls umfasst hierbei:

- Einführung in die Strukturlehre organischer Verbindungen;
- Nomenklatur und Konstitution organischer Moleküle (Grundgerüst, funktionelle Gruppen, Cyclen und Aromaten);
- Isomerie, Konstitionsisomerie, Tautomerie, Stereoisomerie (Konfiguration/Konformation, Enantiomerie, Diastereomerie, Cycloalkane;
- Mesomerie:
- MO-Modell/Hybritisierung (Alkane/Alkene/Alkine);
- Einführung in die Reaktivität ausgewählter, funktioneller Gruppen (Namensreaktionen).

Intended Learning Outcomes:

Nach der erfolgreichen Teilnahme am Modul "Aufbau und Struktur organischer Verbindungen" erinnern sich die Studierenden an den Aufbau der für die organische Chemie relevanten Stoffklassen und chemischen funktionellen Gruppen. Die Studierenden verstehen die Beziehung zwischen der chemischen Struktur und der Wirkung von organischen Molekülen. Die Studierenden sind in der Lage, die wesentlichen Reaktions-, Bindungs- und Hybridisierungskonzepte der organischen Chemie zu verstehen und auf einfache Beispiele selbstständig anzuwenden. Grundzüge der relevanten Stoffklassen und organischen Reaktionsweisen im Bereich der Lebensmittelchemie gehören hierbei zum Kenntnisstand der Studierenden. Insgesamt haben die Studierenden nach der erfolgreichen Teilnahme am Modul einen Überblick über die Grundzüge organisch-chemischer Strukturen.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung (3 SWS), sowie einer begleitenden Übungsveranstaltung (1 SWS). Die Inhalte der Vorlesung werden in Vorträgen, Präsentationen und Tafelanschriften vermittelt. Begleitend sollen die Studierenden die behandelten Inhalte durch Durchsicht eines geeigneten Lehrbuchs weiter vertiefen. In der Übung werden die Inhalte der Vorlesung durch die Bearbeitung eines Fragenkatalogs sowie von, auf die Vorlesung abgestimmten, Arbeitsblättern weiter vertieft. Somit wird eine detaillierte Vertiefung mit dem Fokus auf den Aufbau und die Reaktivität organisch-chemischer Verbindungen erreicht. Es ergibt sich ein zweistufiges, auf Wiederholung und Vertiefung basierendes Konzept bzgl. zentraler Lerninhalte. Weiterhin wird in freiwillig zu besuchenden Tutorübungen das erlernte Wissen in Zusammenarbeit mit Kommilitonen nochmals besprochen, eingeübt und gefestigt.

Media:

Vortrag mittels PowerPoint, Tafelanschrift, Skriptum, Übungsaufgabensammlung, Übungsblätter, Filme

Reading List:

Als Lehrbuch begleitend zur Vorlesung: Vollhardt (Wiley VCH), McMurry (Thomon Learning)

Responsible for Module:

Sieber, Stephan; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Aufbau und Struktur organischer Verbindungen, Übung (CH0109) (Übung, 1 SWS) Sieber S (Lehmann V)

Aufbau und Struktur organischer Verbindungen (CH0109) (Vorlesung, 3 SWS) Sieber S (Lehmann V)

Aufbau und Struktur organischer Verbindungen, Tutorübungen (CH0109 / CH0864) (Tutorium, 1 SWS)

Sieber S [L], Hagn F, Lehmann V

For further information in this module, please click campus.tum.de or here.

WZ2002: Introduction to Genetics | Einführung in die Genetik

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	180	90	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird in Form einer schriftlichen Prüfung erbracht, die sowohl aus Multiple-Choice Fragen als auch aus Freitextfragen besteht. Die Prüfungsdauer beträgt 90 Minuten. Es sind keine Hilfsmittel erlaubt. Die Klausur dient der Überprüfung der in dem Modul erlernten theoretischen Kompetenzen. Die Studierenden zeigen in der Klausur, ob sie in der Lage sind, das erlernte Wissen zu strukturieren und die wesentlichen Aspekte darzustellen. Anhand der Fragen müssen die Studierenden zeigen, dass sie die molekularen Grundlagen der Vererbung, der genetischen Informationsverarbeitung, sowie der Genomstabilität erfasst haben. Sie sollen die erarbeiteten Informationen beschreiben, interpretieren, sinnvoll kombinieren und auf ähnliche Sachverhalte übertragen können.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Keine

Content:

Im Rahmen der Vorlesung werden theoretische Grundlagen zu folgenden Themen vermittelt: Struktur von Genen und Genomen, Genfunktion, Vererbung von Genen, Rekombination, Gene und Chromosomen, Mutationen, Bakteriengenetik, rekombinante DNA Technologie, Genomik, Transposons, Kontrolle der Genexpression, die genetische Basis der Entwicklung. In der Übung wird das Erlernte anhand von Beispielen und Problemfällen angewandt und vertieft.

Intended Learning Outcomes:

Nach erfolgreicher Absolvierung dieses Moduls besitzen die Studierenden ein grundlegendes Verständnis genetischer Prinzipien sowie der molekularen Grundlagen der Vererbung. Des Weiteren werden praxis-relevante Einblicke in Forschung und Anwendung gewonnen. Die

Studierenden können abstrakte genetische Logik anwenden und haben erste Fähigkeiten zur wissenschaftlichen Problemlösung erworben. Sie verstehen genetische Prinzipien, deren molekulare Grundlagen und die, in der Genetik verwendeten, Modellsysteme. Sie haben Einblicke in die Verteilung des Erbguts während der Zellteilung gewonnen. Die Studierenden sind des weiteren in der Lage die Grundprinzipien der Genregulation zu beschreiben. Sie haben die elementaren Aspekte der rekombinanten DNA-Technologie verstanden, und können die Prozesse die Veränderungen im Erbgut auslösen, sowie deren Reparatur beschreiben.

Teaching and Learning Methods:

"Veranstaltungsform/Lehrtechnik: Vorlesung, Präsentation, Übung. Lernaktivitäten: Studium von Vorlesungsskript, -mitschrift, und Literatur. Verabeiten der Podcasts. Lösen von Problemen (unter Anleitung sowie selbständig). Hausaufgabe."

Media:

"Präsentationen mittels Powerpoint,

Skript, Audio- und Videopodcasts (Downloadmöglichkeit für Vorlesungsmaterial)."

Reading List:

Introduction to Genetic Analysis. 12th Edition.

Griffiths, A.J.F., Doebley, J. Peichel, C., Wassarman, D.A. (2020). Macmillan International Higher Education, New York, USA.

Responsible for Module:

Schneitz, Kay Heinrich, Prof. Dr. kay.schneitz@tum.de

Courses (Type of course, Weekly hours per semester), Instructor:

Genetik-Übung für Studiengang Biochemie/Molekulare Biotechnologie (Übung, 4 SWS) Johannes F, Lindermayr C

Genetik (Vorlesung, 2 SWS)

Schneitz K, Schwechheimer C

CH0655: Physical Chemistry 1 | Physikalische Chemie 1

Version of module description: Gültig ab winterterm 2023/24

Module Level: Bachelor	Language: German	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module examination consists of a 90-minute written exam in which students are required to present thermodynamic processes computationally, as well as in words. The answers require partly own calculations, representation and/or interpretation of diagrams and formulations, partly ticking of given multiple answers. Permitted aids during the exam include a non-programmable calculator, a dictionary and a standard collection of formulas, which is provided to the students by the examiners. The formulary, along with the lecture notes, practice exercises, and a practice exam, can be found in the semester-appropriate Moodle course. Access to this is gained by registering for the lecture course of the corresponding semester.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Grundlagen in Mathematik und Physik (Mathematische Methoden der Chemie 1 & 2; Experimentalphysik 1 & 2). Prinzipien und Methoden der Chemie.

Content:

- 1) equations of state for perfect and real gases (intermolecular interactions, van der Waals equ. und virial expansion), principle of corresponding states
- 2) kinetic gas theory, specific heat, translational-, rotational- and vibrational degrees of freedom, Boltzmann- und Maxwelldistribution (incl. elemetary statistical background)
- 3) 1. law of thermodynamics: internal energy and enthalpy as a state function (exact differential, independence of path), isothermal and adiabatic processes, Joule-Thomson effect (inversion temperature), thermochemistry: Hess law, Kirchhoff's statement, Haber-Born-cycle
- 4) 2. law of thermodynamics: reversible and irreversible processes, Carnot cycle, entropy (thermodynamic and statistical definition), 3. law of thermodynamics, phase transition and Trouton

- 's rule, efficiency, heat pump, Helmholtz function/Gibbs free energy (maximal work), Gibbs'sche fundamental equations, Maxwell equations
- 5) equilibrium: partial molare quantities, chemical potential, Herny's und Raoult's law, law of mass action, thermodynamic and other equilibrium constants, pressure dependence of equilibrium, Le Chatelier, van't Hoff equation, Gibbs-Helmholtz equation, fugacity and activity
- 6) basic elements of electrochemistry, electrochemical potential, Nernst equation, redox reactions and equilibrium at electrodes (half cells), galvanic und electrolytic cells

After finishing this module the participant should be able:

- 1) to recognize the statistical charakter of thermodynamics and kinetics and to remember the Gibb 's formalism
- 2) to understand and explain the meaning of the thermodynamic state functions and their applicability to thermochemistry, thermodynamic equilibrium and kinetics
- 3) to apply and solve the equations which had been worked out on concrete problems of thermodynamic equilibrium and kinetics
- 4) to formally analyse standard thermodynamic and kinetic phenomena and to explain them on a microscopic level.

Teaching and Learning Methods:

The modul consists of a lecture (3SWS) and an excercise (1SWS).

The contents of the lecture will be presenteted orally, with presentations and animations. The connection between formal tools, microscopic pictures and the wealth of phenomenological data will be worked out.

Every week a set of exemplary problems relating to the lecture will be published for solving on ones own. One week later the strategy to obtain a solution of these problems will be discussed together in smaller groups and then solved on the blackboard. Comprehensive solutions are available at our homepage including: 1) a delineation of the strategy of solution, 2) a detailed solution including all steps of calculation 3) supplementary information for stimulating own studies.

Media:

Media used in the lecture are presentations an blackboard writing in order to communicate knowledge in thermodynamics. A complete set of the overheads together with a detailed manuscript for further reneforcement are provided.

Weekly appearing excercises will apply the aquired concepts reanforce the of learning content. The students are urged to study the literature and are stimulated to discuss current scientific studies. Extensive sollution manuals and worksheets for interactiv calculation of complex problems are supplied.

Reading List:

Atkins, Peter William; Paula, Julio de: Physical chemistry New York: W.H. Freeman.

Wedler, Gerd: Lehrbuch der physikalischen Chemie. Weinheim.

Job, Georg; Rüffler, Regina: Physikalische Chemie. Eine Einführung nach neuem Konzept mit zahlreichen Experimenten Wiesbaden: Vieweg + Teubner.

Schreiter, Walter: Chemische Thermodynamik. Grundlagen, Übungen, Lösungen. Berlin: de Gruyter.

Responsible for Module:

Willinger, Marc-Georg; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Grundlagen der Physikalischen Chemie 1 für Studierende der BC/MBT (CH0946 / CH0655) (Vorlesung, 3 SWS)
Willinger M (Radde N, Rinaldi A)

Grundlagen der Physikalischen Chemie 1 für Studierende der BC/MBT, Übung (CH0946 / CH0655)

(Übung, 1 SWS)
Willinger M (Padde N. Pipaldi A)

Willinger M (Radde N, Rinaldi A)

WZ2634: Introduction to Bioinformatics I | Bioinformatik für Biowissenschaften I

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German/English	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module examination consists of a written exam (90 minutes) in which the students are tested on their understanding of the basic concepts and methods of bioinformatics, such as genome analysis, sequence comparison, databases, database search and heuristics, secondary structure prediction, gene prediction in prokaryotes, and their ability to reproduce them in a condensed form, even under time pressure. In the written exam (aid: calculator) questions have to be answered by free formulations, algorithmic problems, both logical and computational, have to be solved and, to a limited extent, given multiple answers have to be answered by ticking.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

none

Content:

Introduction to basic concepts and methods in bioinformatics. Topics include:

- Overview of tasks and goals of bioinformatics.
- Introduction to the molecular basics of biology with reference to bioinformatics
- Tasks of sequence and genome analysis
- Basics of data structures
- Introduction to string algorithms for sequence comparison
- Sequence alignment: Needleman-Wunsch, Smith-Waterman
- Sequence search in databases: FASTA, BLAST
- Analysis of secondary sequence information: Patterns, weighted matrices, HMM
- Gene prediction in prokaryotes

After passing the module, students will be able to:

- understand and reproduce important concepts of bioinformatics (tasks and goals of bioinformatics, molecular basics of biology with reference to bioinformatics, sequence and genome analysis, data structures);
- practically apply standardized methods of bioinformatics (e.g. string algorithms for sequence comparison, sequence alignment (Needleman-Wunsch, Smith-Waterman), sequence searches in databases (FASTA, BLAST), analysis of secondary sequence information (patterns, weighted matrices, HMM), as well as explain them comprehensibly in written form.

Teaching and Learning Methods:

In the lecture, basic concepts, methodological approaches and typical problems of bioinformatics are presented to the students. problems of bioinformatics are conveyed to the students. The students then deepen their knowledge by solving various tasks in the exercise hours. Concrete bioinformatics tools and databases are presented that implement the algorithms and concepts previously discussed in the lecture. Typical application scenarios will be shown and discussed using sample data.

Media:

Exercise sheets, presentation of slides, discussions during lectures, materials on the course Web page.

Reading List:

- Understanding Bioinformatics, M. Zvelebil and J.O.Baum, Garland Science 2008
- Introduction to Bioinformatics, A. Lesk, Oxford University Press 2019

Responsible for Module:

Frischmann, Dimitri; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Bioinformatik f. Biowissenschaften I (Vorlesung, 2 SWS)

Frischmann D [L], Frischmann D, Parr M

Übung zur Vorlesung Bioinformatik f. Biowissenschaften I (Übung, 2 SWS)

Frischmann D [L], Frischmann D, Parr M

CH0115: Reactivity of Organic Compounds | Reaktivität organischer Verbindungen

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Modulpru#fung stellt eine schriftliche Klausur von 90 Minuten dar. In dieser soll nachgewiesen werden dass die Studierenden die grundlegenden Prinzipien der organischen Reaktivität in begrenzter Zeit und ohne Hilfsmittel abrufen und auf bekannte Strukturen und Strukturänderungen gezielt anwenden können. Die Prüfungsfragen gehen über den gesamten Stoff des Moduls. Die Antworten erfordern teils eigene Berechnungen und Formulierungen, teils Ankreuzen von vorgegebenen Mehrfachantworten. Optional wird angeboten, dass die Studierenden, wenn sie mindestens 50% der freiwilligen schriftlichen Hausaufgaben richtig bearbeitet haben, ihre Modulnote um 0,3 auf die bestandene Klausur anheben können. Die Endnote setzt sich somit zusammen aus der bestandenen Klausur (100%), welche bei Bestehen von 50% der freiwilligen schriftlichen Hausaufgaben mit einem Bonus von 0,3 auf die Modulnote angehoben wird.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

"Aufbau und Struktur organischer Verbindungen", "Allgemeine und Anorganische Chemie"

Content:

Das Modul beschäftigt sich mit der Reaktivität organischer Verbindungen und hat zum Ziel, grundlegende Reaktionen der Organischen Chemie verständlich zu machen, wobei folgende Themenbereiche angesprochen werden: Radikalische Substitution, Nucleophile Substitution, Eliminierung, Addition, Aromatische Substitution, Oxidation/Reduktion, Reaktionen von Carbonylverbindungen und Umlagerungen. Auch werden wichtige Werkzeuge und Theorien zum Verständnis von Reaktionsmechanismen behandelt. Bestimmte Reaktionen in technischen Prozessen sowie die Relevanz organischer Reaktionen in biochemischen Prozessen werden diskutiert.

Nach der Teilnahme am Modul sind die Studierenden in der Lage, grundlegende Reaktionen der Organischen Chemie bezüglich ihrer Reaktionsmechanismen anhand der grundlegenden Reaktivität der beteiligten Verbindungen zu verstehen. Sie sind in der Lage, diese Reaktivitäten auf ausgewählte technische und biochemische Prozesse anzuwenden. Die Studierenden können das Auftreten von Reaktionen in Abhängigkeit der Reaktionsbedingungen und Molekülstrukturen vorhersagen.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung (3 SWS) und einer begleitenden Übung (1 SWS). Die Inhalte der Vorlesung werden im Vortrag und durch Präsentation vermittelt. Studierende sollen zur inhaltlichen Auseinandersetzung mit den Themen angeregt werden sowie zum weiterführenden Studium der Literatur. In der Übung werden konkrete Beispiele zu den Inhalten der Vorlesung vertieft besprochen sowie grundlegende Konzepte aus der Vorlesung auf anders formulierte Probleme angewendet. Optional werden wöchentlich schriftliche Hausaufgaben zu behandelten Vorlesungsinhalten gestellt, die bei Abgabe korrigiert und mit individuellen Anmerkungen zur Lernkontrolle versehen werden.

Media:

Die Vorlesung verwendet verschiedene Medien inklusive Tafelarbeit und Projektion der wesentlichen Inhalte. Begleitend werden PDF-Handouts angeboten. Zur Repetition kann ein Vorlesungsskriptum bezogen werden. Übungsaufgaben werden in Übungsblättern (PDF) zur Verfügung gestellt.

Reading List:

Als Lehrbücher begleitend zur Vorlesung werden empfohlen:

- a) R. Brückner, "Reaktionsmechanismen", 3. Aufl., Spektrum Verlag, 2004.
- b) K. P. C. Vollhardt, N. Schore, "Organische Chemie", 5. Aufl., VCH-Wiley, 2011.
- c) Clayden, Greeves, Warren, "Organische Chemie", 2. Aufl., Springer, 2013.

Responsible for Module:

Hintermann, Lukas; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Reaktivität Organischer Verbindungen, Übung (CH0115) (Übung, 1 SWS) Hintermann L

Reaktivität Organischer Verbindungen (CH0115) (Vorlesung, 3 SWS) Hintermann L

CH0221: Internship Biological Chemistry | Praktikum Biologische Chemie

Version of module description: Gültig ab winterterm 2018/19

Module Level: Bachelor	Language: German	Duration: one semester	Frequency: winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
8	240	120	120

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird in Form einer Laborleistung erbracht. Hierbei gliedert sich die Laborleistung in zwei thematisch auf gesplittete Ausrichtungen: 1. Biochemische Ausrichtung. 2. Organisch-chemische Ausrichtung. Beide thematischen Ausrichtungen gehen mit je 50% in die Gesamtbewertung des Moduls ein. Im Rahmen der Laborleistung müssen die Studierenden 5 biochemisch-orientierte Versuchsreihen (Klonierung eines Gens; chromatographische Reinigung eines Proteins; SDS-PAGE-Verfahren und immunologische Proteinnachweise; NMR Analyse von Peptiden; molekulare Modellierung) durchführen die sich jeweils über 2-4 Nachmittage erstrecken. In der organisch-chemischen Ausrichtung führen die Studierenden insgesamt 8 Versuchsreihen (ausgewählte Synthesen und Reinigungstechniken von organischchemischen Verbindungen und deren Charakterisierung) durch. Je Versuchsreihe stehen den Studierenden 1-2 Versuchsnachmittage zur Durchführung zur Verfügung. Mit den Versuchsreihen aus beiden Themengebieten wird nachgewiesen, dass die Studierenden in der Lage sind, industrietypische, aus mehreren Einzelschritten bestehende Arbeitsabläufe im Rahmen der Handhabung und Analyse von Biomolekülen sowie der Synthese und Aufreinigung organischchemischer Verbindungen durchzuführen. Den Studierenden steht, über einen zu Semesterbeginn veröffentlichten Versuchs- und Laborbelegungsplan, die Möglichkeit offen, die zeitliche Planung der Versuchstage im Rahmen der räumlichen und technischen Möglichkeiten flexibel zu gestalten. Hierbei werden im Regelfall die einzelnen Versuchsreihen an mehreren Terminen angeboten. wobei die Studierenden in selbstgewählten Gruppen durch die Versuchsreihen rotieren.

Bestandteil der Laborleistung sind kurze Versuchsprotokolle zu jeder Versuchsreihe (je 2 bis max. 10 Seiten). Diese Protokolle dienen dem Nachweis der wissenschaftlichen Darstellung von Laborergebnissen und gliedern sich in: Einleitung zur Thematik, Beschreibung der eingesetzten Methoden, Zielsetzung, experimentelle Durchführung, erzielte Ergebnisse inklusive deren Interpretation. Diese Versuchsprotokolle sind spätestens ein bis zwei Wochen nach Durchführung der Versuchsreihe abzugeben. Spezifische sicherheitsrelevante Aspekte und gängige methodische

Fehlerquellen sind ggfls. im Rahmen der Protokolle kurz zu erläutern. Im Rahmen der Überprüfung der kommunikativen Lernergebnisse finden Vorbereitungs- und Ergebnisbesprechungen sowie ggfls. eine Präsentation der Ergebnisse in einem Vortrag statt. Dabei zeigen die Studierenden, dass sie die erarbeiteten Thematiken und Methoden mündlich wiedergeben, beschreiben, interpretieren und auf andere Sachverhalte übertragen können.

In die Benotung der Laborleistung setzt sich zusammen aus:

- Biochemische Ausrichtung: Protokolle (50%) und praktische Versuchsdurchführung (50%).
- Organisch-chemische Ausrichtung: Protokolle (28%) und praktische Versuchsdurchführung (72%).

Die praktische Versuchsdurchführung wird dabei nach qualitativen Kriterien wie z.B. Mengenausbeuten an synthetisiertem Produkt, Sauberkeit der Produkte, Qualität der AA-Gele etc. und sicherheitsrelevanten Kriterien wie korrekter Umgang (wie das Kennen und Einhalten der Sicherheitsvorschriften und Betriebsanweisungen) mit Geräten, Materialien, Chemikalien oder Biostoffen und deren Entsorgung bewertet.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Module Biochemie 1 und Biochemie 2 sowie Aufbau- und Struktur organischer Verbindungen. Ein Grundwissen in Biochemie (Molekülklassen, Gentechnik, Struktur und Funktion von Proteinen) und Organischer Chemie (Nomenklatur, Struktur) ist erforderlich.

Content:

Biochemische Versuche:

- Amplifikation und Klonierung von Genen mittels verschiedener Techniken;
- Expression von Genprodukten;
- Isolation von Proteinen;
- Chromatographische Methoden (Ionenaustauscher-, Größenauschluss- und Affinitätschromatographie);
- Herstellen (Packen) und Validieren von Chromatographiesäulen;
- Programmierung und Steuerung von Chromatographieanlagen;
- Technik von Chromatographieanlagen (HPLC-Systeme);
- SDS-Gelelektrophorese;
- Immunoblot;
- NMR, Aufbereitung und Interpretation von NMR-Spektren;
- Molecular Modelling, Optimierung, Molekulardynamik und Simulated Annealing mit dem Programm HyperChem.

Organisch-chemische Versuche:

- Experimente zu den vier präparativen Grundoperationen (Destillation, Kristallisation, Extraktion und Säulenchromatographie):

- Einfache Synthesen aus dem folgenden Repertoire: Radikalische Substitution, nukleophile Substitution, Eliminierung, Addition, aromatische Substitution, Oxidation/Reduktion, Reaktionen von Carbonylverbindungen und Umlagerungen plus eine biokatalytische Reaktion;
- Erhaltene Verbindungen werden mit diversen analytischen Methoden (NMR-Spektroskopie, Gaschromatographie, Massenspektrometrie, Dünnschichtchromatographie, Schmelz- und Siedepunktbestimmung, Brechungsindexbestimmung) charakterisiert.

Nach der Teilnahme am Modul sind die Studierenden in der Lage, grundlegende molekularbiologische Methoden theoretisch zu beschreiben und praktisch durchzuführen. Sie sind in der Lage, eigenständig Klonierungsstrategien für Zielgene zu entwickeln und umzusetzen. Sie können Proteine rekombinant exprimieren und über verschiedene chromatographische Techniken aufreinigen sowie die Reinheit der Isolate mittels SDS-PAGE abschätzen und die Identität des Genprodukts über Immunoblot kontrollieren. Die Studierenden sind in der Lage Chromatographiesäulen für die Aufreinigung von Proteinen eigenständig zu packen und zu validieren. Sie verstehen die Funktion und Steuerung von präparativen Chromatographiesystemen und deren grundlegenden Validierungsparameter.

Des Weiteren sind die Studierenden in der Lage, NMR-Spektren zu analysieren und daraus die Struktur von organischen Molekülen wie Dipeptide abzuleiten. Sie können in einem Docking-Experiment mit Molecular-Modelling-Methoden die Wechselwirkung zwischen einem Protein und einem Liganden analysieren und darüber hinaus neue Liganden entwickeln, die für den potentiellen Einsatz als Inhibitor geeignet sind. Außerdem können die Studierenden präparative Grundoperationen (Destillation, Kristallisation, Extraktion, Säulenchromatographie) durchführen und analytische Methoden (NMR-Spektroskopie, Gaschromatographie, Massenspektrometrie, Dünnschichtchromatohraphie, Brechungsindexbestimmung, Siedepunktund Schmelzpunktbestimmung) anwenden. Zudem sind sie in der Lage, die den präparativen Grundoperationen und den analytischen Methoden zugrundeliegenden Theorien zu verstehen.

Teaching and Learning Methods:

Das Praktikum wird als Stationenpraktikum mit mehreren Einzelversuchen unter intensiver Betreuung durch die PraktikumsassistentInnen durchgeführt. Die Inhalte des Praktikums werden durch Experimente vermittelt, die Beobachtungen und Ergebnisse in einem Laborjournal dokumentiert und die erhaltenen Verbindungen an diversen analytischen Geräten charakterisiert und ausgewertet. Durch die Vorbereitung und praktische Durchführung der Einzelversuche anhand eines Skripts und ggf. weiterführender Literatur wird die intensive Beschäftigung mit den beinhalteten Thematiken und deren Diskussion mit den Praktikumsassistenten angeregt. Die Theorie zum Versuch, die Versuchsdurchführung sowie die Ergebnisse und deren Auswertung und Interpretation werden in Form von Ausarbeitungen schriftlich festgehalten.

Zur Vorbereitung auf die organisch-chemische Ausrichtung stellen die Studierenden ihren Kommilitonen zudem die Grundoperationen und analytischen Methoden in der präparativen organischen Chemie anhand von Präsentationen in Kleingruppen vor.

Media:

Praktikumsskripte, Powerpoint-Präsentationen, Tafelanschrieb, Computerprogramme, Praktikumsausrüstung

Reading List:

Praktikumsskripte

- J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemie, Spektrum Akademischer Verlag, Auflage 5 oder neuer:
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molekularbiologie der Zelle, Wiley-VCH, Auflage 5 oder neuer;
- K. P. C. Vollhardt, N. E. Schore, Organische Chemie, 3. Aufl.,
- VCH-Wiley, Weinheim, 2000; R. Brückner Reaktionsmechanismen, 3. Aufl., Spektrum Verlag, Heidelberg, 2004;
- S. Hünig, P. Kreitmeier, G. Märkl, J. Sauer, Arbeitsmethoden in der Organischen Chemie, Berlin, 2006.

Responsible for Module:

Buchner, Johannes; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Organisch-Chemisches Praktikum 1 für Biochemiker (CH0221) (Praktikum, 4 SWS) Brandl M (Gemmecker G)

Biochemie für Fortgeschrittene (CH0221) (Praktikum, 5 SWS)

Buchner J, Groll M, Haslbeck M, Huber E

WZ2009: Biochemical Analytics | Biochemische Analytik

Version of module description: Gültig ab summerterm 2012

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
6	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Überprüfung der Lernergebnisse erfolgt mittels Klausur (120 min, schriftlich). In dieser sollen die Studierenden zeigen, dass sie ein grundlegendes theoretisches Verständnis der Funktionsprinzipien der erlernten bioanalytischen Methoden wie z.B.: ESI-Massenspektrometrie und Fluoreszenzspektroskopie besitzen. Die Studierenden zeigen auch, dass sie Aufgabenstellungen zur Anwendung und Eignung der erlernten Methoden sowie zur Interpretation von resultierenden Ergebnissen lösen können. Hierbei sollen sie die erarbeiteten Informationen wiedergeben, beschreiben, sinnvoll kombinieren und auf ähnliche Sachverhalte übertragen können. Somit wird nachgewiesen, dass die Studierenden die Bedeutung der bioanalytischen Methoden für die Analyse von biochemischen und zellbiologischen Fragestellungen (z.B. vergleichende Proteom- und Transkriptomanalytik) einschätzen und nachvollziehen können.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Zur erfolgreichen Teilnahme am Modul wird das Basiswissen in den naturwissenschaftlichen Fächern Physik und Chemie sowie der Mathematik vorausgesetzt.

Content:

In der Vorlesung werden die Grundlagen der instrumentellen Analytik im Kontext biochemischer Applikationen vorgestellt und an praxisbezogenen Beispielen erläutert.

Vorlesungsthemen sind u.a. spektroskopische Methoden wie NMR, UV-VIS, IR, Fluoreszenz. Massenspektrometrie und die darauf basierede Proteom- und Metabolomanalytik. Genomanalytik, NGS-Sequenzierung sowie immunologische Techniken.

Nach der Teilnahme am Modul sind die Studierenden in der Lage, die theoretischen Grundlagen des vorgestellten Methodenspektrums zu verstehen. Sie können die Funktionsprinzipien und die Einsatzgebiete der Methoden (wie. z.B. NGS-Sequenzierung) beschreiben. Darüber hinaus sind die Studierenden in der Lage, Ergebnisse und Daten die aus einzelnen Techniken (z.B.: ESI-Massenspektrometrie) resultieren zu interpretieren und hinsichtlich der Eignung für typische Einsatzgebiete einzuschätzen.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung.

Der Vortrag des Dozierenden wird durch PowerPoint-Präsentationen unterstützt, die Folien werden den Studierenden

online zur Verfügung gestellt.

Durch den Vortrag des Dozierenden ist ein stufenweiser Aufbau der behandelten Themen möglich und kann dem

Lerntempo der Studierenden angepasst werden. Durch Fragen des Dozierenden an die Zuhörerschaft, soll das

Wissen gefestigt werden und die Studierenden zum selbstständigem Literaturstudium angeregt werden.

Media:

Präsentationen mittels Powerpoint (Downloadmöglichkeit für Vorlesungsmaterial); Tafelarbeit

Reading List:

Es ist kein Lehrbuch verfügbar, das alle Inhalte dieses Moduls abdeckt. Als Grundlagen werden empfohlen:

Lottspeich, Engels: "Bioanalytik, 2. Auflage, Spektrum Akademischer Verlag, Heidelberg, Berlin, 2006.

Responsible for Module:

Bernhard Küster (kuster@tum.de)

Courses (Type of course, Weekly hours per semester), Instructor:

Biochemische Analytik [WZ2009] (Vorlesung, 4 SWS)

Küster B [L], Seidel M, Schwab W, Frank O, Küster B, Schwechheimer C, Stark T For further information in this module, please click campus.tum.de or here.

CH0950: Biochemistry 3 | Biochemie 3

Version of module description: Gültig ab summerterm 2018

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 240	Self-study Hours:	Contact Hours:
8		165	75

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird in Form einer Klausur (180 Minuten) erbracht. Mittels Verständnisfragen soll nachgewiesen werden, dass die Studierenden die Inhalte des Moduls wiedergeben und auch zusammenhängende Prozesse wie z.B. Proteintransport in Mitochondrien, Sekretion oder die Dynamik des Zytoskeletts erklären können. Die Studierenden sollen auch die erlernten technologischen Grundlagen der Strukturanalyse von Biomolekülen (Kristallisation, NMR und Elektronenmikroskopie) wiedergeben, Unterschiede sowie Einsatzmöglichkeiten erklären und Anwendungsbeispiele erläutern können. Die Antworten erfordern teils eigene Berechnungen von methodischen Parametern der erlernten strukturgebenden Techniken, das Skizzieren und Beschreiben von zellulären Gesamtprozessen sowie teils das Ankreuzen von vorgegebenen Mehrfachantworten. Hierbei weisen die Studierenden nach, dass sie in der Lage sind, das erlernte Wissen zu strukturieren, Zusammenhänge zu erkennen auf Gesamtprozesse zu übertragen und die wesentlichen Aspekte darzustellen.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Module Biochemie 1 und Biochemie 2.

Content:

Zelluläre Biochemie:

- Fortgeschrittene Kenntnisse über molekulare, biochemische Prozesse in Pro- und Eukaryonten;
- Detaillierter Zellaufbau von Pro- und Eukaryonten, Kompartimentierungen in Prokaryonten, Aufbau und Funktion von eukaryontischen Organellen;
- Stofftransport innerhalb der Zelle und in Organellen, vesikuläre Sekretions- und Stoffaufnahmewege, Signaltransduktion;
- Regulation der Transkription in Eukaryonten, Chromatinorganisation;

- Struktur und Aufbau des Zytoskeletts und seine Dynamik, Gewebe und Zell-Zell-Kontakte. Der Fokus liegt in allen Themenbereichen auf dem molekularen Verständnis des mechanistischen Zusammenspiels und der Dynamik von Proteinkomplexen und ihren Interaktionspartnern.

Strukturanalyse von Biomolekülen:

- Proteinkristallographie;
- Kristallzucht, Kristallsymmetrie, Bestimmung von Raumgruppen, Bragg'sches Gesetz, komplexe Zahlen, Optik, Interferenz, Ewaldkonstruktion, Fouriersynthese, Pattersonmethoden, Harker-Sektionen, Harkerkonstruktion, Multipler Isomorpher Ersatz und Phasenproblematik Elektronenmikroskopie:
- Physikalische Grundlagen, Probenvorbereitung, Durchführung der Messungen, Bildanalyse Biomolekulare NMR Spektroskopie;
- Grundlagen der NMR Spektroskopie von biologischen Makromolekülen, Messverfahren, Fouriertransformation, Bedeutung von wichtigen Experimente und NMR Parametern (NOE, J-Kopplungen, Relaxation, Austausch) zur Untersuchung der Struktur, molekularen Wechselwirkungen und Dynamik von biologischen Makromolekülen.

Intended Learning Outcomes:

Nach der Teilnahme am Modul sind die Studierenden in der Lage, detailliertes theoretisches Verständnis und Fachwissen über prokaryontische und eukaryontische zelluläre Prozesse wiederzugeben. Sie können das komplexe molekulare Zusammenspiel verschiedener Proteine, Nukleinsäuren und anderer zellulärer Makromoleküle in zentralen biochemischen Prozessen nachvollziehen und Zusammenhänge erkennen und verstehen. Die Studierenden können biochemische und zellbiologische Arbeitstechniken an verschiedenen Modellorganismen erkennen. Sie können komplexere fachliche Fragestellungen über die Kombination von verschiedenen Methoden nachvollziehen und im größeren Zusammenhang einer Forschungsthematik einordnen und beurteilen. Nach erfolgreicher Absolvierung dieses Moduls sind die Studierenden in der Lage, die wesentlichen Theorien und Arbeitsvorgänge zu verstehen, die nötig sind, um beginnend mit der Kristallzucht mittels Röntgenstrukturanalyse zu einem aussagefähigen Proteinmolekülmodell der Kristallstrukturanalyse zu gelangen. Die Studierenden sind ebenfalls in der Lage, die wesentlichen Theorien und Arbeitsvorgänge zu verstehen, die nötig sind, um mittels elektronenmikroskopischer Aufnahmen und anschließender Bildanalyse die Quartärstruktur von biologischen Makromolekülen abzuleiten.

Die Studierenden sind darüber hinaus in der Lage, das Messprinzip, die Fouriertransformation und wichtige NMR-Parameter zur Strukturbestimmung (NOE, J-Kopplungen) in mehrdimensionalen Experimenten zu erkennen und die Anwendung der NMR Spektroskopie auf biologische Makromoleküle zu verstehen.

Teaching and Learning Methods:

Das Modul besteht aus zwei Vorlesungsteilen "Zelluläre Biochemie" (3SWS) und "Biologische Makromoleküle, Struktur und Funktion" (2SWS). Die Inhalte der Vorlesung werden im Vortrag und durch Präsentation vermittelt. Studierende sollen durch gezielte Fragen und deren Diskussion zur inhaltlichen Auseinandersetzung mit den Themen sowie zum weiterführenden Studium der Literatur angeregt werden.

Media:

Tafelanschrieb, Präsentation, Skriptmaterial.

Reading List:

Vorlseungsskripte, Lehrbücher nach aktueller Angabe der Dozenten. Molekularbiologie der Zelle; Alberts, Johnson, Lewis, Raff, Roberts, Walter; Wiley-VCH; ISBN 3-527-30492-4 (4. Auflage) oder neuere Auflagen

Responsible for Module:

Buchner, Johannes; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Zelluläre Biochemie 1 (CH0663) (Vorlesung mit integrierten Übungen, 3 SWS) Buchner J (Haslbeck M), Daub H, Feige M, Woehlke G

Biochemie 3: Biologische Makromoleküle - Struktur und Funktion (CH0950/NAT0013) (Vorlesung, 2 SWS)

Groll M (Haslbeck M), Sattler M, Plitzko J, Buchner J

WZ2644: Introduction to Biotechnology | Einführung in die Biotechnologie

Version of module description: Gültig ab winterterm 2019/20

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 180	Self-study Hours:	Contact Hours:
6		124	56

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die theoretischen Kompetenzen aus den Inhalten der Vorlesung werden durch eine 90-minütige Klausur ermittelt. Das Beantworten der Fragen erfordert teils eigene Formulierungen, teils Auflistungen, vergleichende Tabellen, Interpretationen sowie Analysen. Weiterhin ist als Studienleistung ein 20-minütiger Vortrag im Rahmen des Seminars mit anschließender 10-minütiger Diskussion zu halten und ein 4-5 seitiges Handout anzufertigen.

Zur Benotung des Seminarvortrags werden folgende Punkte bewertet: Folienaufbau, Vortragsstil, Themenaufbereitung, Handout, Beantwortung von Fragen, Einhaltung der Zeitvorgabe sowie Verständlichkeit.

Die Gesamtnote für das Modul errechnet sich aus dem Mittelwert der Klausurnote und der Seminarnote.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Es werden keine anderen Module als Teilnahmebedingung vorausgesetzt. Theoretische und praktische Kenntnisse der Grundlagen der Biochemie, Mikrobiologie und Genetik werden empfohlen.

Content:

Vorlesung: In der semesterbegleitenden Vorlesung (a 90 min) werden grundlegende Aspekte der Biotechnologie zu folgenden Themenbereichen vermittelt:

- rekombinante Proteinproduktion
- Proteinfaltung
- Antikörpertechnologie
- Bioreaktionstechnik

- Bioreaktoren
- biotechnologische Produktionsprozesse
- Grundlagen der Immunologie
- · Quelle der Antikörpervielfalt
- Herstellung monoklonaler Antikörper
- Biosynthese von funktionalen Antikörperfragmenten in E. coli
- Klonierung von Ig Genrepertoires

Seminar: Ein Team aus Studierenden (i.d. Regel fünf) erhält ein aktuelles Thema aus dem Bereich der modernen Biotechnologie. Nach gemeinsamer Literaturrecherche wird das Thema in Unterthemen gegliedert, von denen jeweils eines von einem Teammitglied in einem 20-minütigen Vortrag präsentiert und anschließend mit dem Auditorium diskutiert wird (10 min). Die Gliederung des Hauptthemas in Unterthemen wird vorher mit dem Leiter des Seminars besprochen.

Intended Learning Outcomes:

Nach der erfolgreichen Teilnahme an diesem Modul verstehen die Studierenden die grundlegenden theoretischen und technologischen Aspekte der Produktion von rekombinanten Proteinen und von Antikörpern. Sie lernen die verschiedenen Bioreaktoren zu unterscheiden und sind in der Lage, biotechnologische Produktionsprozesse im Ablauf zu skizzieren. Des weiteren erhält der Studierende einen Einblick in die Grundlagen der Antikörper-Biotechnologie. Dazu zählen die Entstehung der Antikörper im Immunsystem sowie die Klonierung und gentechnische Herstellung von Antikörpern und ihren funktionellen Fragmenten. Weiterhin ist der Studierende in der Lage, sich anhand eines aktuellen Themas aus dem Bereich der Biotechnologie in ein wissenschaftliches Gebiet einzuarbeiten, aus wissenschaftlichen Publikationen die wichtigsten Aspekte zusammenzufassen und diese in einem Kurzvortrag verständlich zu präsentieren. Die Themenverlosung für das Seminar findet am Ende des vorangehenden Semesters im Rahmen einer Vorbesprechung statt.

Teaching and Learning Methods:

In der Vorlesung werden die Inhalte mit Powerpoint-Folien (inklusive Abbildungen, Animationen und evtl. Videos) vermittelt. Für die Nacharbeit der Vorlesungsinhalte wird zudem das Studium einschlägiger Fachliteratur empfohlen.

Im Seminar wird der Studierende ein Thema nach eigenständiger Literaturrecherche aufarbeiten und in einem 20-minütigen Vortrag präsentieren und Fragen beantworten. Die Studierenden erhalten in einem Vorbereitungsgespräch vom Seminarleiter Tipps zur Vorbereitung und Durchführung einer Präsentation wissenschaftlicher Ergebnisse. Nach dem Vortrag wird in einem Feedback-Gespräch nochmals kurz auf den Präsentationsstil, Folienaufbau, Verbesserungen etc. eingegangen.

Media:

In der Vorlesung werden die Inhalte mit Powerpoint-Folien vermittelt. Die Folien der Vorlesung werden den Studierenden zur Verfügung gestellt.

Im Seminar präsentieren die Studierenden ein vorher mit der Seminarleitung abgesprochenes wissenschaftliches Thema in einem 20-minütigen Vortrag (z. B. PowerPoint; Projektor). Das schriftliche Handout teilt der Studierende vor seinem Vortrag an die Zuhörer aus.

Reading List:

Chmiel, Horst, Takors, Ralf, Weuster-Botz, Dirk: 'Bioprozesstechnik', Springer Spektrum, 4. Auflage, 2018

Clark, David & Pazdernik; Nanette: 'Molekulare Biotechnologie, Grundlagen und Anwendungen', Spektrum Akademischer Verlag, 1. Auflage, 2009

Murphy, Kenneth & Weaver, Casey: 'Janeway Immunologie', Springer Spektrum, 9. Auflage, 2018

Responsible for Module:

Skerra, Arne; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Einführung in die Biotechnologie (CH0660a) (Vorlesung, 2 SWS) Buchner J, Skerra A, Weuster-Botz D, Haslbeck M

Seminar Molekulare Biotechnologie (Seminar, 2 SWS)
Skerra A [L], Schlapschy M, Gütlich M
For further information in this module, please click campus.tum.de or here.

ME2522: General Pharmacology for Students of Biological Sciences | Allgemeine Pharmakologie für Studierende der Biowissenschaften

Version of module description: Gültig ab summerterm 2012

Module Level:	Language:	Duration: one semester	Frequency:
Bachelor	German		summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsdauer (in min.): 60 schriftlich.

Das Modul wird mit einer schriftlichen Prüfung abgeschlossen. Die Studierenden zeigen in der Klausur, ob sie in der Lage sind, das erlernte Wissen zu strukturieren und die wesentlichen Aspekte darzustellen. Die Prüfungsfragen umfassen das gesamte im Modul erworbenen Lernergebnisse. Die Antworten erfordern teils eigene Formulierungen teils Ankreuzen von vorgegeben Mehrfachantworten.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

keine

Content:

Im Rahmen der Vorlesung werden Kenntnisse zu molekularen Grundlagen der Pharmakologie, Pharmakodynamik, -kinetik, -genetic erworben. Mechanismen und Wirkungen von Arzneimittelgruppen und Organpharmakologie werden erlernt. Weitere Themengebiete sind 'Elektrolyt-und Wasserhaushalt, Blutdruck, Blut, Hormone, ZNS, Schmerz und Infektionskrankheiten.

Intended Learning Outcomes:

Nach der Teilnahme besitzen die Studierenden Kenntnisse in den Grundlagen der Pharmakologie sowie Rezeptormodelle, Pharmakodynamik und -kinetik. Sie haben die grundlegenden Wirkmechanismen der großen Arzneimittelgruppen kennengelernt und können diese Kenntnisse auf die Behandlung häufiger Krankheitsbilder übertragen.

ME2522: General Pharmacology for Students of Biological Sciences | Allgemeine Pharmakologie für Studierende der Biowissenschaften

Teaching and Learning Methods:

Lehrtechnik: Vorlesung

Lernaktivitäten:

- " Auswendiglernen
- " Studium von Literatur

Lehrmethode

- " Präsentation
- " Vortrag

In der Vorlesung wird das nötige Wissen durch Vorträge und Präsentationen der Lehrstuhlmitarbeiterinnen und -mitarbeitern gelehrt. Die Studierenden werden zum Studium der Literatur und der inhaltlichen Auseinandersetzung mit den Themen angeregt.

Media:

PowerPoint, Tafelarbeit, Skriptum

Reading List:

Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen - Medikamente gezielt einsetzen von Heinz Lüllmann, Klaus Mohr und Lutz Hein, ISBN: 9783133685184

Responsible for Module:

Andrea Welling (andrea.welling@tum.de) Stefan Engelhardt

Courses (Type of course, Weekly hours per semester), Instructor:

Allgemeine Pharmakologie für Studierende der Biowissenschaften (Bachelor) (Vorlesung, 2 SWS) Welling A [L], Dueck A, Engelhardt S, Laggerbauer B, Lang A, Welling A For further information in this module, please click campus.tum.de or here.

MW2094: Biochemical Engineering | Bioverfahrenstechnik

Version of module description: Gültig ab summerterm 2013

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
9	270	165	105

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module examination consists of a written exam (90 min, auxiliary tool is a non-programmable calculator) and a laboratory assignment, that includes one written test (60 min, auxiliary tool is a non-programmable calculator) at the beginning of the practical work, 4 experiments and 4 written reports (each experiment must be documented in form of a written report).

With the written exam (comprehension questions, computing tasks) students should demonstrate their basic knowledge of biochemical engineering and that they are able to understand and evaluate the essential properties of biotechnological processes. During the laboratory assignment, students demonstrate their ability to cultivate microorganisms up to a liter-scale and their competences to characterize the metabolic activity of these organisms.

The module grade is based on the written exam (2/3) and the laboratory assignment (1/3).

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Basic study stage and practical experience in laboratory work

Content:

This module provides basic engineering principles of biological transformation of substances for students of natural sciences. Additionally, fundamental knowledge regarding production processes using enzymes and cells is taught (biotransformation, downstream processing, sterile engineering and analytics). Practical skills and selected experimental techniques are provided especially for the biotechnological production using microorganisms (sterile engineering, operation of bioreactors in a batch or fed-batch mode, mass transfer in bioreactors, producton of proteins using microorganisms, downstream processing).

At the end of the module, students have acquired basic knowledge of biochemical engineering. In addition, they are able to understand and evaluate the essential properties of biotechnological processes. Furthermore, students are able to cultivate microorganisms up to a liter-scale and they can characterize their metabolic activity.

Teaching and Learning Methods:

The content of this module is taught theoretically in the lecture (2 SWS). Major contents are taken up and repeated in exercises (1 SWS). Experiments are performed in small groups supervised by research assistants (practical training with 4 SWS). The experimental results are evaluated in the same small group and included in the written report. In general, sample solutions are issued and discussed a week later. Notes are provided with detailled instructions for the experiments and analysis for performing the practical training. The practical performance of the experiments takes place in the technical facilities of the Institute for Biochemical Engineering and is supervised by research assistants.

Media:

The slides shown in the lecture are made available to the students in an appropriate form and time. Exercises are handed out regularly.

Reading List:

Currently, there is no textbook available which comprises all content of this module. As a recommendation for an introduction: Horst Chmiel: Biochemical Engineering. Elsevier GmbH, Munich. Notes with detailled instructions for the experiments and analysis are provided.

Responsible for Module:

Weuster-Botz, Dirk; Prof. Dr.-Ing.

Courses (Type of course, Weekly hours per semester), Instructor:

Grundlagen der Bioverfahrenstechnik (MW1044) (Vorlesung, 3 SWS)

Weuster-Botz D [L], Weuster-Botz D, Bischoff D, Blums K, Caballero Cerbon D, Güreli Z, Koruyucu A, Thurn A, Walla B

Praktikum Bioverfahrenstechnik (MW1043) (Praktikum, 4 SWS)

Weuster-Botz D [L], Weuster-Botz D, Bischoff D, Blums K, Caballero Cerbon D, Güreli Z, Koruyucu A, Thurn A, Walla B

WZ2033: Proteins, Protein-Engineering and Immunological Processes | Proteine, Protein-Engineering und Immunologische Prozesse

Version of module description: Gültig ab summerterm 2023

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Das Modul wird mit einer schriftlichen Modulprüfung in Form einer 90-minütigen Klausur abgeschlossen.

Die Studierenden weisen in der Klausur nach, dass sie befähigt sind, den Aufbau von Proteinen und Grundprinzipien des Protein-Engineerings sowie der Immunologie darzustellen und unterschiedliche Informationen aus den Bereichen der Proteinstruktur/-funktion und der Immunologie zu einem neuartigen Ganzen zu verknüpfen. So weisen die Studierenden beispielsweise nach, dass sie die grundlegenden Ansätze des Protein-Engineerings für die Optimierung von Proteinen z. B. hinsichtlich Reaktivität verstanden haben sowie Auswirkungen auf die Proteinfaltung und -stabilität beschreiben und erläutern können. Weiterhin sollen die Studierenden nachweisen, dass sie den Aufbau und die Bestandteile des Immunsystems sowie seine Funktionen erläutern sowie funktionelle Zusammenhänge verstehen und auf Beispielpathologien übertragen können.

Dabei erfordert das Beantworten der Fragen teilweise eigene Formulierungen, teilweise Auflistungen, vergleichende Tabellen, Interpretationen sowie Analysen und Skizzen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Voraussetzungen für die erfolgreiche Teilnahme sind theoretische und praktische Kenntnisse der Grundlagen der Biochemie.

Content:

Vorlesung: Proteine: Struktur, Funktion und Engineering

Die Proteine bilden die funktionell vielfältigste Stoffklasse innerhalb der Biomakromoleküle. Als Enzyme, Hormone und Antikörper, Membran-, Struktur-, Transport- und Speicherproteine erfüllen sie eine Vielzahl von Aufgaben innerhalb und außerhalb der Zelle. Die Gentechnik ermöglicht heute nicht nur die Überproduktion von Proteinen in mikrobiellen Expressionssystemen oder Zellkultur; vielmehr ist durch Manipulation der kodierenden Gensequenz auch der Austausch von Aminosäuren innerhalb eines Proteins oder gar die Verknüpfung verschiedener Proteine zu einer einzigen Polypeptidkette möglich. Dieses Protein-Engineering macht sich neben biophysikalischen Methoden auch die modernen Techniken der Strukturanalyse zunutze, u.a. X-ray und NMR. Auf folgende Aspekte wird insbesondere eingegangen: Aminosäuren, Polypeptide und Proteine; selektive chemische Modifizierung; Grundlagen und Beschreibung der dreidimensionalen Struktur; Faltung und Denaturierung von Proteinen; Molekulare Erkennung; Praktische Modellsysteme des Protein-Engineerings zum Studium der Faltung, Ligandenbindung und enzymatischen Katalyse.

Vorlesung: Grundlagen der Immunologie

- Aufbau und Funktion des Immunsystems
- Grundlegende Prinzipien der Immunologie
- Signale im Immunsystems
- Angeborene Immunantwort
- Erkennung von Antigenen
- Vielfalt der Antigenrezeptoren
- · Differenzierung und Terminierung der Lymphozytenantwort

Immunabwehr ist das Zusammenspiel aller spezifischen und unspezifischen zellulären, als auch humoralen Mechanismen des Körpers, Krankheitserreger aber auch entartete körpereigene Zellen zu erkennen und daran zu hindern, sich im Körper zu vermehren. Das Verstehen der beteiligten Proteine ist dabei von entscheidender Bedeutung für das Erkennen und Begreifen von Vorgängen im menschlichen Immunsystem.

Intended Learning Outcomes:

Nach der Teilnahme an dem Modul verfügen die Studierenden über theoretische Grundlagen der Struktur und Funktion der Proteine sowie der Immunologie. Sie können den chemischen Aufbau der Proteine aus Aminosäuren und die daraus resultierenden Reaktivitäten beschreiben. Darüber hinaus verstehen sie die Zusammenhänge zwischen Raumstruktur und biophysikalischen Wechselwirkungen innerhalb einer Polypeptidkette sowie mit dem Lösungsmittel Wasser, Liganden und Substraten.

Weiterhin sind die Studierenden in der Lage, den Aufbau und die Bestandteile des Immunsystems sowie ihre Funktionen zu benennen und darzustellen, funktionelle Zusammenhänge der Bestandteile des Immunsystems zu beschreiben, die Grundprinzipien der Regulation der Immunantwort sowie die immunologischen Grundlagen akuter und chronischer Entzündungsprozesse zu erläutern.

Dadurch sind die Studierenden in der Lage, das Verhalten von Proteinen unter praktischen Aspekten einzuschätzen und Strategien zu ihrer Optimierung für gegebene Anwendungsbedingungen zu entwickeln. Dazu zählt auch die Regulation der Immunantwort, von welchem die Studierenden nach dem erfolgreichen Abschluss dieses Moduls die Grundprinzipien verstehen. Durch die Kenntnis dieser Grundprinzipien sind die Studierenden befähigt, die Pathogenese chronischer Entzündungsprozesse und degenerativer Zivilisationskrankheiten zu erklären.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung. Ein mündlicher Vortrag, unterstützt durch visuelle Präsentationen, führt in die theoretischen Grundlagen der Proteinbiochemie und des Immunsystems ein. Darauf aufbauend werden die Studierenden im Literaturstudium angehalten, wissenschaftliche Publikationen und sonstige Fachliteratur zu analysieren, einzuschätzen und auch weiteres Vorgehen zu entwickeln.

Media:

Die Vorlesung erfolgt mit graphischen Präsentationen (Projektor und PowerPoint) anhand derer die mehrdimensionalen Proteinstrukturen verdeutlicht und die komplexen Abläufe im Immunsystem visuell dargestellt werden können. Die Folien werden den Studenten in elektronischer Form oder als Ausdruck rechtzeitig zugänglich gemacht.

Reading List:

Fersht, "Structure and Mechanism in Protein Science", W.H.Freeman, 1998. Petsko, Ringe, "Protein Structure and Function", Sinauer Associates, 2004. Whitford, "Proteins - Structure and Function", John Wiley & Sons, 2005.

Janeway Immunologie; Kenneth Murphy, Paul Travers, Mark Walport; Spektrum Akademischer Verlag

Responsible for Module:

Skerra, Arne; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Grundlagen der Immunologie (Vorlesung) (Vorlesung, 2 SWS) Haller D [L], Haller D, Schmöller I

Proteine: Struktur, Funktion und Engineering (Vorlesung, 2 SWS)

Skerra A [L], Skerra A

WZ2645: Cell Culture and Molecular Genetics | Zellkultur und Molekulargenetik

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor	German/English	one semester	winter semester
Credits:*	Total Hours: 180	Self-study Hours:	Contact Hours:
6		120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The examination takes the form of a written examination (120 min). In the written examination, students demonstrate whether they are able to structure the knowledge they have acquired and present the key aspects.

They should be able to describe, interpret and meaningfully combine the information they have acquired and transfer it to similar situations.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Successful basic examinations

Content:

The ZellTech lecture serves as a theoretical introduction to the basics of cell culture technology (cell culture laboratory, sterile technique, culture media, routine methods) paired with a selection of applications (tissue engineering, toxicity testing, cell-based production, drug discovery with HTS/ HCS etc.) that are oriented towards the needs of life science students.

The MoGeRe lecture offers a refresher in the basics of mendelian, quantitative and population genetics, as well as an introduction to the tools for genome-wide analyses (next-generation sequencing, high-throughput genotyping, genome-wide association studies) and genome modification (gene structure, recombinant DNA, genetic modification of mammals). Furthermore the essential relationships between physiological regulatory mechanisms at the organismic and molecular level are taught.

After participating in the module course, students are able to:

CellTech: select suitable methods from the spectrum of cell culture techniques for processing specific scientific questions and apply them in a targeted manner, at least in theory. They will be able to assess the influence of individual cell culture parameters on the experimental results.

MoGeRe: understand the most important concepts of mendelian, quantitative and population genetics and can apply these to appropriate tasks. They have a good overview of the tools for genome-wide analyses and can assess their use. They have a basic understanding of genome modification methods and can evaluate the practical and ethical pros and cons of these technologies in mammals. Students will be able to describe and evaluate physiological regulatory circuits and explain and illustrate modern quantitative measurement methods and key molecular technologies.

Teaching and Learning Methods:

Vorlesung. Es werden theoretische Grundkonzepte erläutert und diskutiert, sowie Grundlagen für spätere anwendungsorientierte Praktika gelegt. Interaktion mit den Studenten während der Vorlesung wird durch gezielte Fragen und Problemstellungen gesucht.

Media:

Lecture. Basic theoretical concepts are explained and discussed, and the foundations for later application-oriented practical courses are laid. Interaction with the students during the lecture is sought through specific questions and problems.

Reading List:

There is no textbook available that covers all the content of the two lectures. The presentation material is supplemented by specific literature references for the individual topics.

Responsible for Module:

ZellTech: Karl Kramer (karl.kramer@tum.de) MoGeRe: Dietmar Zehn (dietmar.zehn@tum.de)

Courses (Type of course, Weekly hours per semester), Instructor:

Zellkulturtechnologie: Grundlagen und praktische Anwendungen (Vorlesung, 2 SWS) Küster B [L], Kramer K

Molekulare Genetik und Regulationsphysiologie der Tiere (Vorlesung, 2 SWS) Wurmser C, Berner J, Chiang M, Fischer K, Flisikowska T, Flisikowski K, Kirchner B, Manlik W For further information in this module, please click campus.tum.de or here.

WZ2034: Molecular Bacterial Genetics and Metabolic Engineering | Molekulare Bakteriengenetik und Metabolic Engineering

Version of module description: Gültig ab summerterm 2023

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 180	Self-study Hours:	Contact Hours:
6		120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Eine schriftliche Klausur (90 min.) werden die erlernten theoretischen Grundlagen der Molekularen Bakteriengenetik und Metabolic Engineering überprüft. Die Studierenden zeigen in der Prüfung ihr erlerntes Problemlösungsvermögen bei der Entwicklung von biotechnologischen Verfahren und weiteren molekulargenetischen angewandten Fragestellungen. Sie beschreiben bakterielle Genome und extrachromosomale Erbträger und veranschaulichen Mutagenese Strategien. Darüber hinaus differenzieren sie die Fachbegriffe der Regulation der bakteriellen Genexpression und erklären die Genregulation auf RNA-Ebene. Sie erläutern u.a. die industrielle Anwendung von Hydrolasen, Oxidoreduktasen, Transferasen, Lyasen, Isomerasen und Ligasen als isolierte Enzyme oder in ganzen Zellen für die Herstellung von wirtschaftlich relevanten Chemikalien sowie die biotechnologische Produktion von beispielsweise Citronensäure und Glutaminsäure mit genmodifizierten Organismen. Sie beschreiben die Ziele, Werkzeuge und Methoden des Metabolic Engineering.

Repeat Examination:

Next semester / End of Semester

(Recommended) Prerequisites:

Grundkenntnisse der Genetik, der Mikrobiologie, der Enzymkatalyse und der Chiralität

Content:

- Bakterielle Genome und extrachromosomale Erbträger: Plasmide, Bakteriophagen.
- Bakterien als Wirte, Mutagenese Strategien
- Regulation der bakteriellen Genexpression: Operon, Regulon, Modulon und Stimulon. Genregulation auf RNA-Ebene, Genregulation und bakterielle Kommunikation.
- Industrielle Anwendung von Hydrolasen, Oxidoreduktasen, Transferasen, Isomerasen, Lyasen und Ligasen in der Biokatalyse

- Immobilisierungstechniken
- Biotechnologische Produktion von beispielsweise Citronensäure, Glucono-delta-lacton, Glutaminsäure

Nach der erfolgreichen Teilnahme an den Modulveranstaltungen besitzen die Studierenden das grundlegende theoretische Verständnis und Fachwissen zur molekularen Genetik und der Regulationsphysiologie von Bakterien und Tieren. Sie kennen die Anwendungen der katalysierbaren Reaktionen in der Manipulation bakterieller und pflanzlicher Stoffwechselwege. Die Studierenden können in molekularen Regulationscircuits denken, besitzen grundlegende Fähigkeiten zum Lösen von Problemen dieses fachlichen Bereiches und können molekulargenetische Probleme und deren Bedeutung für anwendungsorientierte Fragestellungen bewerten.

Teaching and Learning Methods:

Das Modul besteht aus zwei Vorlesungen. Die theoretischen Grundlagen werden erläutert und durch Tafelanschrieb und Präsentationen visuell begleitet. Zusätzlich erfolgen während der Lehrveranstaltungen Fallstudien und interaktive Diskurse mit den Studierenden. Darüber hinaus erhalten die Studierenden Übungsaufgaben und sie werden angehalten aktuelle Literatur zu lesen und zu diskutieren. Dadurch soll das Problemlösungsvermögens bei anwendungsorientierten Fragestellungen bei den Studierenden gefördert werden.

Media:

Zur Vermittlung der theoretischen Grundlagen werden Tafelanschrieb und Präsentationen verwendet. Zusätzlich erleichtern Kurzvideos das Verständnis für die metabolischen Abläufe. Das Vorlesungsskript wird zu Beginn der Vorlesungen ausgegeben und dient auch zur Mitschrift.

Reading List:

K. Faber, Biotransformations in Organic Chemistry, Springer, 6. Auflage, Springer Verlag Snyder L, Peters JE, Henkin TM, Champness W (2013) Molecular genetics of bacteria. 4th ed, ASM Press Washington.

Responsible for Module:

Schwab, Wilfried; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Molekulare Bakteriengenetik (Vorlesung, 2 SWS) Ehrenreich A, Liebl W

Metabolic Engineering und Naturstoffproduktion (Vorlesung, 2 SWS) Schwab W

WZ2035: Regulatory and economic basics of biotechnology | Rechtliche und wirtschaftliche Grundlagen der Biotechnologie

Version of module description: Gültig ab summerterm 2023

Module Level:	Language:	Duration: one semester	Frequency:
Bachelor	German		summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
6	150	90	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Das Modul wird mit einer schriftlichen Modulprüfung in Form einer 90-minütigen Klausur abgeschlossen.

Die Studierenden weisen in der Klausur nach, dass sie die biotechnologisch relevanten Gesetze und Verordnungen kennen und daraus sicherheitstechnische Aspekte für die Arbeit im Labor ableiten können. So zeigen die Studierenden beispielsweise, dass sie gentechnische Arbeiten nach Abschätzung des Risikopotentials zu einer der vier Sicherheitsstufen zuordnen und daraus sicherheitstechnische Anforderungen für die Laborausstattung stellen können. Weiterhin zeigen die Studierenden, dass sie in der Lage sind, wirtschaftlich relevante Erfindungen zu beurteilen, patentrechtlich schützen zu lassen und Möglichkeiten zur wirtschaftlichen Verwertung aufzeigen und dafür nötige betriebswirtschaftliche Grundlagen anwenden können. Dabei erfordert das Beantworten der Fragen teilweise eigene Formulierungen, teilweise Auflistungen, vergleichende Tabellen, Interpretationen sowie Analysen und Skizzen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Es werden keine anderen Module als Teilnahmebedingung vorausgesetzt. Theoretische und praktische Kenntnisse der Grundlagen der Biochemie, Mikrobiologie und Genetik werden empfohlen.

Content:

In der Vorlesung "Rechtliche Grundlagen der Biotechnologie" werden folgende Themen und deren Relevanz für die biotechnologische Forschung behandelt:

Gentechnikgesetz

WZ2035: Regulatory and economic basics of biotechnology | Rechtliche und wirtschaftliche Grundlagen der Biotechnologie

- Gentechniksicherheitsverordnung
- Gefahrstoffrecht
- Sicherheitsrecht
- Biostoffverordnung
- Sicherheitstechnische Unterweisung (exemplarisch)
- Tierschutzgesetz
- Arbeitsmedizin

In der Vorlesung "Industrielle Biotechnologie – von der Idee zum Produkt" werden folgende Themenbereiche vorgestellt:

- Patentrecht
- Vorgehensweise bei einer Patentanmeldung
- Gründung eines Biotechnologie Unternehmens
- Kapitalbeschaffung
- Erfahrungsberichte und Tipps erfolgreicher Gründer

In der Vorlesung "Ökonomie für Life Science Engineering (Molekulare Biotechnologie)" werden folgende Themengebiete gelehrt:

- Grundprinzipien der Ökonomie, Unternehmen und Volkswirtschaft
- Ausgewählte Teilbereiche der Betriebswirtschaftslehre:
- Beschaffung
- Produktionsmanagement
- Internes und externes Rechnungswesen
- · Finanzierung und Investitionsrechnung
- Absatzwirtschaft

Intended Learning Outcomes:

Ziel dieses Moduls ist, den Studierenden (a) den rechtlichen Rahmen biotechnologischer Forschung, (b) Erfindungen, schutzrechtliche Aspekte und Möglichkeiten einer Unternehmensgründung sowie (c) die betriebswirtschaftlichen Grundlagen der wirtschaftlichen Umsetzung biotechnologischer Entwicklungen und Verfahren zu vermitteln.

Nach der Teilnahme an diesem Modul kennen die Studierenden Gesetze und Verordnungen, die den Rahmen bilden für verantwortliches gentechnisches Arbeiten, Umgang mit Gefahrstoffen, Umgang mit Biostoffen, tierexperimentelles Arbeiten sowie Arbeitsmedizin. Mit diesem Wissen sind die Studierenden in der Lage, biotechnologische Forschungsarbeiten hinsichtlich rechtlicher Aspekte zu beurteilen und zu planen.

Zudem werden in diesem Modul die Grundlagen für die wirtschaftliche Vermarktung biotechnologischer Erfindungen vermittelt. Die Studierenden verstehen danach den Verlauf und die Notwendigkeit der Patentierung einer Erfindung, und sie haben gelernt, welche wesentlichen Aspekte bei der Gründung eines Biotechnologie-Unternehmens zu beachten sind.

Die Studierenden erwerben Kenntnisse zu Grundprinzipien der Ökonomie sowie zu ihrer Gliederung in Teildisziplinen und den Aufgabenstellungen dieser Teildisziplinen. Die Studierenden

lernen wichtige Begriffe und Prinzipien des internen und externen Rechnungswesens kennen und erwerben grundlegende Kenntnisse zur Interpretation von Finanzberichten u. ä. sowie grundlegende Fähigkeiten über betriebliche Sachverhalte in der Terminologie des Rechnungswesens zu kommunizieren.

Die Studierenden lernen die grundlegenden Methoden der Investitionsrechnung kennen und erlernen die Grundlagen einfacher Investitions-Sachverhalte (statisch und dynamisch).

Teaching and Learning Methods:

In der Vorlesung werden die Inhalte mit PowerPoint-Folien (inklusive Abbildungen, Animationen und evtl. Videos) vermittelt. Zusätzlich werden die Studierenden dazu angehalten, sich mittels Literaturstudium intensiv mit den Inhalten der Lehrveranstaltungen auseinanderzusetzen.

Media:

In der Vorlesung werden die Inhalte mit Powerpoint-Folien vermittelt. Die Folien der Vorlesung werden den Studenten zur Verfügung gestellt.

Reading List:

- Vorwerk, Sonja: Schritt für Schritt zum Patent. 1. Aufl. 2018, Springer Spektrum
- Offenburger, Oliver: Patent und Patentrecherche: Praxisbuch für KMU, Start-ups und Erfinder. 2.
 Aufl. 2017, Springer Gabler
- Herstatt, Cornelius & Müller, Christian: Management-Handbuch Biotechnologie. Strategien, Finanzen, Marketing, Recht. 1. Aufl. 2002, Schäffer-Poeschel
- · Einschlägige Gesetze und Verordnungen
- KRUSCHWITZ, Lutz: Investitionsrechnung. 9. Auflage, Oldenbourg, 2003
- GÖTZE, Uwe, BLOECH, Jürgen: Investitionsrechnung. 4. Auflage, Springer, 2004
- BLOHM, Hans, Lüder, Klaus: Investition, 7. Auflage, 1991, Vahlen
- SCHNEIDER, Dieter: Investition, Finanzierung, Besteuerung. 7. Auflage, 1992
- Gabler; Mußhoff, Oliver u. Hirschauer, Norbert: Modernes Agrar-Management. Vahlen 2010
- MÖLLER, Hans Dieter; Hüffner, Bernd: Betriebswirtschaftliches Rechnungswesen. Pearsen Verlag
- Balderjahn, Specht: Einführung in die Betriebswirtschaftslehre. 8. Auflage, Stuttgart, München: Schäffer-Poeschel Verlag; C.H. Beck.

Responsible for Module:

Skerra, Arne; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Ökonomie für Life Science Engineering (Molekulare Biotechnologie) (WZ2035, deutsch) (Vorlesung mit integrierten Übungen, 2 SWS) Sauer J [L], Sauer J

Rechtliche Grundlagen der Biotechnologie, Sicherheits- und Patentrecht (Vorlesung, 1 SWS) Skerra A [L], Schlapschy M, Eichinger A

WZ2035: Regulatory and economic basics of biotechnology | Rechtliche und wirtschaftliche Grundlagen der Biotechnologie

Ringvorlesung "Industrielle Biotechnologie - von der Idee zum Produkt" (Vorlesung, 1 SWS) Skerra A [L], Skerra A, Schlapschy M, Eichinger A For further information in this module, please click campus.tum.de or here.

CH0665: Physical Chemistry 2 | Physikalische Chemie 2

Version of module description: Gültig ab summerterm 2024

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird in Form einer Klausur (90 Minuten) erbracht. In dieser weisen die Studierenden nach, dass sie quantenmechanische Phänomene wiedergeben, beschreiben und verstehen (z.B. Konzept der Elektronenkonfiguration, Bildungsprinzipien für Mehrelektronensysteme, Operatorschreibweise in der Quantenmechanik, Eigenwerte zum Drehimpuls- und Spinoperator). Außerdem können die Studierenden die Grundlagen auf weiterführende Lernergebnisse (z.B. Beschreibung der Molekülrotation und der Kernspinsowie der Elektronenspinresonanz) anwenden und können Konzepte zur Analyse von Molekülschwingungen mittels Spektroskopien entwickeln.

Sie zeigen, dass ein Problem erkannt wird und Wege zu einer Lösung gefunden werden. Zur Lösung der Prüfungsfragen sollen die Studierenden das erarbeiteten Wissen sinnvoll kombinieren und auf Fragestellungen und ähnliche Sachverhalte übertragen und anwenden können.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Grundlagen in der Physik und Chemie. Modul Physikalische Chemie 1.

Content:

- Einführung in die quantenmechanischen Grundlagen der Molekülspektroskopie sowie zum Aufbau der Materie;
- Beschreibung der molekularen Bewegung: Rotation, Schwingung, elektronische Anregung, Kernund Elektronenspin;
- Spektroskopische Methoden zur Beobachtung dieser Bewegungen: Mikrowellen-, Infrarot-, Raman-, UV-, NMR- und ESR-Spektroskopie;
- Der Einfluss von molekularer Symmetrie auf die Spektroskopie;

- Instrumentelle Grundlagen: Spektrometer und Lichtquellen, ausgewählte Beispiele der Anwendung von Spektroskopie in der chemischen Analyse.

Intended Learning Outcomes:

Nach der Teilnahme am Modul sind die Studierenden in der Lage, den Aufbau der Materie unter dem Gesichtspunkt einer modernen quantenmechanischen Beschreibung zu verstehen. Sie sind mit dem Konzept der Elektronenkonfiguration vertraut und kennen die Bildungsprinzipien für Mehrelektronensysteme sowie die Konzepte der chemischen Bindung. Weiterhin können die Studierenden die Operatorschreibweise in der Quantenmechanik und sind mit Größen wie den Eigenwerten zum Drehimpuls- und Spinoperator vertraut. Sie sind in der Lage, diese Größen für die Beschreibung der Molekülrotation und der Kernspin- sowie der Elektronenspinresonanz einzusetzen. Sie kennen die quantenmechanische Beschreibung von harmonischen und anharmonischen Schwingungen und können die Konzepte zur Analyse von Molekülschwingungen anwenden. Die Studierenden kennen folgende Spektroskopien: μ-Wellen-, NMR-, ESR-, IR-, Raman- und UV-Vis-Spektroskopie. Sie sind in der Lage, Spektren der aufgelisteten Spektroskopiearten zu verstehen und diese kritisch zu bewerten. Die Studierenden können zudem Informationen über Moleküle aus den jeweiligen Spektren extrahieren. Die Studierenden sind in der Lage die Bedeutung des erlernten Wissens in der chemischen Analytik nachzuvollziehen.

Teaching and Learning Methods:

Das Modul besteht aus einer Vorlesung (3 SWS) und einer begleitenden Übung (1 SWS). Die Inhalte der Vorlesung werden im Vortrag und durch Präsentation vermittelt. Studierende sollen durch gezielte Fragen und deren Diskussion zur inhaltlichen Auseinandersetzung mit den Themen sowie zum weiterführenden Studium der Literatur angeregt werden. Zum Vorlesungsstoff werden wöchentlich Übungsblätter mit exemplarischen Problemen zum selbständigen Lösen herausgegeben. In den Übungsstunden wird in kleineren Gruppen die Lösungsfindung der Aufgaben diskutiert und im Anschluss die Aufgaben im Detail vorgerechnet und kommentiert.

Media:

Tafelanschrieb, Präsentation, mit medialer Unterstützung.

Reading List:

Vorlseungsskripte, P.W. Atkins, Physical Chemistry, Oxford, ISBN 0-198-70072-5

- C.N. Banwell & E.M. McCash, Molekülspektroskopie: Ein Grundkurs, Oldenbourg, ISBN 3-486-24507-4
- H. Haken, H.C. Wolf, Molekülphysik und Quantenchemie, Berlin, Springer, ISBN-10 3-540-30314-6
- F. Engelke, Aufbau der Moleküle, Stuttgart, Teubner, ISBN 3-515-23056-9
- T. Mayer-Kuckuk, Atomphysik, Stuttgart, Teubner, ISBN 3-519-23042-9

Responsible for Module:

Günther, Sebastian; Prof. Dr.

Courses (Type of course, Weekly hours per semester), Instructor:

Molekülstruktur und Spektroskopie (CH0665) (Vorlesung, 3 SWS) Günther S

Molekülstruktur und Spektroskopie, Übung (CH0665) (Übung, 1 SWS) Günther S

Elective Modules | Wahlmodule

Module Description

LS20025: Applied Data Science in the Life Sciences | Applied Data Science in the Life Sciences

Version of module description: Gültig ab summerterm 2023

Module Level:	Language:	Duration:	Frequency:
Bachelor	English	one semester	summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		75	75

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module exam will be a project assignment at the end of the semester in groups of 3-4 students. The project assignment will be the development of an analysis pipeline that students will use to communicate that they have understood concepts from the course. After submitting the report, participants will engage in peer review. The grade will be equally divided between the peer review (approximately 2 pages) and the final report (approximately 15 pages), where the peer review is not used to grade the peer-reviewed group.

To explain: For example, there is group A and group B. Each group writes a report that is part of the peer review. Group A reviews the report of group B and vice versa. The quality of Group A's review (for Group B) is included in Group A's evaluation.

In addition, there is the possibility to take a voluntary course achievement as a mid-term achievement according to APSO §6 para. 5. This is conceived in the form of a practice performance, i.e. the students receive worksheets on the basis of which they practically learn and prove the correct handling of the methods (group work 3-4 persons).

In the event of an unsuccessful examination, participants are given a one-time opportunity to submit an improved version of the report and/or peer review.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Introductory Statistics (MA9602)

Content:

This module covers the fundamentals of Data Science in the field of molecular biology. The following content will be covered:

- Fundamentals of R. Bioconductor
- Scientific principles from Open Science to FAIR data
- Visualization of OMICS data
- Basics of machine learning
- Data Science basics of metagenomics and statistical analysis
- Data Science basics of transcriptomics, differential gene expression analysis
- Data Science basics of functional enrichment analysis
- Data Science Fundamentals of proteomics
- Data Science Fundamentals of metabolomics

Intended Learning Outcomes:

After successful completion of the module, the participants are familiar with the basics of Data Science. They know the basics of the programming language R and can handle package environments such as R/Bioconductor and CRAN, install suitable packages, familiarize themselves with the documentation and solve simple tasks independently, as well as visualize results using suitable tools. The participants are able to reproduce basic principles of machine learning and to recognize and classify possible problems and limitations on the basis of examples. The participants will be able to describe the specifics of different OMICS technologies, explain the technical basis and describe common methods for quality assurance, processing and visualization of data as well as their normalization and deeper analysis. The analysis of different OMICS profiles using suitable software packages can be performed independently. The participants also know common data and reporting standards as well as suitable databases and repositories for data dissemination. The use of basic statistical methods allows the participants to analyze, interpret and discuss the results.

Teaching and Learning Methods:

Lecture, exercise, project work.

Lecture with active participation of the students.

Guided exercises, presentation and discussion of exercise problems; working on different topics as a group, guided analysis of OMICS data and discussion of results.

Media:

Präsentation von Folien; Dialog in der Vorlesung und den Übungen;

Reading List:

Modern Statistics for Modern Biology; Susan Holmes, Wolfgang Huber (https://www.huber.embl.de/msmb/)

Responsible for Module:

Wilhelm, Mathias, Prof. Dr. rer. nat. mathias.wilhelm@tum.de https://www1.ls.tum.de/compms Schirmer, Melanie, Ph.D. melanie.schirmer@tum.de Sharma, Sapna, Dr. sapna.sharma@tum.de List, Markus, Ph.D. markus.list@tum.de

Courses (Type of course, Weekly hours per semester), Instructor:

Angewandte Data Science in den Biowissenschaften (Vorlesung, 2 SWS) Wilhelm M, Schirmer M, List M, Witting M

Übung Angewandte Data Science in den Biowissenschaften (Übung, 3 SWS) Wilhelm M, Schirmer M, List M, Witting M For further information in this module, please click campus.tum.de or here.

LS20002: Introduction to Epigenetics | Einführung in die Epigenetik

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung wird im Rahmen einer schriftlichen benoteten Klausur (90 min) erbracht. Generell dient die Klausur zur Überprüfung der erlernten Kompetenzen. Die Studierenden zeigen, ob sie die erarbeiteten Informationen beschreiben, interpretieren und auf ähnliche Sachverhalte übertragen können. Das heißt, die Studierenden müssen zeigen können, dass sie die molekularen Grundlagen der Epigenetik wiedergeben können; dass sie die epigenetische Mechanismen die zur Genregulierung, Entwicklung und Krankheitsverläufen beitragen verstehen; dass sie Methoden beschreiben können die benutzt werden um epigenetische Modifikationen zu messen, und wie epigenetische Veränderungen als molekulare Uhr fungieren. Letztlich müssen die Studierenden in der Lage sein, sich mit Fragen über die epigenetische Vererbung kritisch auseinandersetzten zu können.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

keine

Content:

Der Inhalt der Vorlesungen ist wie folgt gegliedert:

- Was ist Epigenetik?
- Molekulare Grundlagen der Epigenetik
- Epigenomische Messungen
- Epigenetik in der Entwicklung
- Epigenetik und Krankheiten
- Epigenetische Uhren
- Epigenetische Vererbung
- Epigenetik in der Evolution

Ergänzend zur Vorlesung wird die hier beschriebene Übung angeboten, in der die Studierenden folgende Inhalte erlernen:

- In silico CpG-Stellen Analyse.
- Assay-Design für gezielte Bisulfit-Sequenzierung.
- Bisulfit-Konversion von DNA.
- Pyrosequenzierung
- Eigenständige Analyse der DNA Methylierung.

Intended Learning Outcomes:

Nach der erfolgreichen Teilnahme an dem Modul sind die Studierenden in der Lage:

- das Forschungsgebiet der Epigenetik thematisch abzugrenzen.
- die molekularen Bestandteile der Epigenetik wiederzugeben.
- zu verstehen wie epigenetische Mechanismen zur Genregulierung und damit auch zur Entwicklung und zu bestimmenden Krankheitsverläufen beitragen.
- wiederzugeben wie epigenetische Modifikationen auf Genomweiter Ebenen gemessen werden können.
- BS-seq Messungen und Analysen selbständig im Labor durchzuführen
- zu erklären wie epigenetische Veränderungen als molekulare Uhr benutzt werden können, um das chronologische und biologische Alter von Organismen zu bestimmen.
- kritisch zu diskutieren in welchen Rahmen epigenetische Veränderung zur Vererbung von Phänotypen beitragen können.
- Kritisch zu diskutieren in welchen Rahmen epigenetische Veränderungen zur Evolution beitragen können.

Teaching and Learning Methods:

- Lehranstaltungsform/Lehrtechnik: Vorlesungen zielen darauf hin den Inhalt des Wissensgebiets theoretisch zu vermitteln.
- Lernaktivität: Das Lesen, Diskutieren und Präsentieren der primären Literatur unterstützt die VO und hilft den Studierenden, das gelernte Material in konkreten Fragestellung/Hypothesen wiederzuerkennen. Weiterhin wird die Theorie durch praktische Übungen im Labor fundiert.
- Die Lehrmethode bezieht sich hauptsächlich Powerpoint Vorträge die es ermöglichen das Material in strukturierter, logischer und übersichtlicher Form zu vermitteln.
- Eigenständige Laborarbeit zur Analyse der DNA Methylierung.

Media:

- Powerpoint
- Videos
- Moodle

Reading List:

- Buch: Epigenetics. Lyle Armstrong. 2014 by Garland Science, Taylor & Francis Group, LLC
- Thematische Reviews: werden auf Moodle zur Verfügung gestellt

Responsible for Module:

Johannes, Frank; Prof. Dr.

Courses (Type of course, Weekly hours per semester), Instructor:

Messungen und Analyse der DNA Methylierung (Übung, 2 SWS) Johannes F [L], Flisikowski K

Einführung in die Epigenetik (Vorlesung, 2 SWS) Johannes F [L], Johannes F For further information in this module, please click campus.tum.de or here.

MA9607: Applied statistics | Angewandte Statistik

Version of module description: Gültig ab summerterm 2021

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	105	45

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Modulprüfung besteht aus einer schriftlichen Prüfung (60 Minuten) mit Fragen und Berechnungen.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

MA9602 - Einführung in die Statistik

Content:

Mehrfache lineare Regresssion und damit verbunden Hypothesentest, mehrfaktorielle Varianzanalyse und damit verbundene Hypothesentests, Nichtparametrische Verfahren, Planung von Versuchen, Handhabung von Daten.

Intended Learning Outcomes:

Nach dem erfolgreichen Abschluss des Moduls sind die Studierenden in der Lage, für mehrere Erklärende entsprechend des Skalenniveaus ein geeignetes statistisches Auswerteverfahren auszuwählen und anzuwenden. Die Studierenden sind in der Lage, in wissenschaftlichen Publikationen angegebenen statistischen Kennzahlen und Verfahren zu interpretieren. Sie erkennen den Zusammenhang und die Bedeutung zwischen der Planung eines Versuchs und seiner Auswertung und können Techniken im Umgang mit Daten auswählen, bewerten und anwenden.

Teaching and Learning Methods:

Die Lehrtechniken sind Vorlesung und Übung. Die erwarteten Lernaktivitäten sind Erarbeiten der Inhalte anhand der ausgegebenen Unterlagen, Rechnen von Übungsaufgaben. Eingesetzte Lehrmethoden: Vortrag, blended learning, Partnerarbeit.

Media:

Vorlesungsunterlagen, Übungsaufgaben und zusätzliches Material sowie die schriftlichen Notizen zu Vorlesungen und Übungen wird auf Moodle bereitgestellt.

Reading List:

Peck, R., Olsen, C., Devore, J., Introduction to Statistics and Data Analysis, Thomson -Brooks/ Cole 2008 (International student edition).

Pruscha, H, Statistisches Methodenbuch, Springer.

Responsible for Module:

Petermeier, Johannes; Dr.-Ing.

Courses (Type of course, Weekly hours per semester), Instructor:

Übungen zu Angewandte Statistik (WZW) [MA9607] (Übung, 1 SWS) Petermeier J

Angewandte Statistik (WZW) [MA9607] (Vorlesung, 2 SWS)

Petermeier J

WZ2692: Microbial Ecology and Microbiomes | Mikrobielle Ökologie und Mikrobiome

Version of module description: Gültig ab summerterm 2024

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Modulleistung wird in Form einer benoteten Klausur mit der Dauer von 60 min erbracht, in der keine Hilfen zugelassen sind. Die Klausur dient der Überprüfung der in der Vorlesung und während der Exkursionen erworbenen Kompetenzen: Die Studierenden sollen zeigen, dass sie die Bedeutung von Mikrobiomen für das Funktionieren von terrestrischen und aquatischen Ökosystemen sowie die Bedeutung von Mikrobiomen bei Interaktionen in Mikroben-Wirts-Systemen (z.B. Pflanzen – Mikroben Interaktionen) verstanden haben. Außerdem soll die Relevanz von Mikrobiomen im Bereich der Landnutzung, der Ernährung sowie der Hygiene bewertet werden. Ferner sollen in der Klausur die Bedeutung abiotischer Treiber wie Klima oder Umweltverschmutzung für die Struktur und Funktion von Mikrobiomen in unterschiedlichen Lebensräumen erklärt werden. Die Beantwortung der Fragen erfordert eigene Formulierungen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Vorlesung und Übungen in Allgemeiner Mikrobiologie

Content:

Vorlesung: 1 Einführung und Überblick: Von Einzelzellen zu Mikrobiomen.- 2 Methoden der mikrobiellen Ökologie.- 3 Kommunikationsprozesse bei Mikroorganismen.- 4 Stoffkreisläufe.- 5 Bioremediation.- 6 Rolle von Pilzen in Stoffkreisläufen.- 7 Interaktionen von Mikroorganismen mit Pflanzen.- 8 Interaktionen von Bakterien mit Pilzen.- 9 Interaktion von Bakterien mit Protozoen.- 10 Interaktion von Bakterien mit Invertebraten.- 11 Interaktion von Mikroorganismen mit Säugern

Exkursionen: Es werden Unternehmen und Behörden besichtigt, bei denen mikrobielle ökologische Prozesse und Mlkrobiome eine Rolle spielen, beispielsweise: Kläranlage, Käserei, Brauerei, Krankenhaus, Lebensmittelkontrolle, Biogasanlage u.a.m.

Intended Learning Outcomes:

Die Studierenden erwerben grundlegendes Fachwissen über die Bedeutung von Mikrobiomen in unterschiedlichen Ökosystemen. Die Studierenden sind in der Lage die Bedeutung von Mikrobiomen für die Gesundheit unterschiedlicher Wirte (Pflanzen, Tier, Mensch) zu beschreiben und verstehen die Wechselwirkung von Mikrobiomen in unterschiedlichen Umwelten. Sie können ihre Kenntnisse über biotische und abiotische Wechselwirkungen zwischen Umwelt und Mikroben auf technische und industriell genutzte Ökosysteme anwenden.

Teaching and Learning Methods:

Vorlesungsvorträge mit Lehrdialogen zur Vertiefung des Verständnisses. Exkursionen mit Demonstrationen

Lernaktivitäten: Anfertigen einer Vorlesungsmitschrift, Studium vom Vorlesungsskript, Beantwortung von Übungsfragen, Nacharbeit des Stoffes mit dem Lehrbuch.

Media:

PowerPoint, Lehrfilme, Tafelarbeit, Script, Lernhilfe (Übungsfragen), Exkursionen mit Demonstrationen.

Reading List:

Brock Mikrobiologie (2013) Teil VII Mikrobielle Ökologie (Kapitel 22 – 25) v. Stallmach und Vehreschild (2016) Mikrobiom: Wissensstand und Perspektiven Berg, Smalla, Schloter, Grube The plant microbiome and its importance for plant and human health (Frontiers in Plant Sciences, 2014; ebook)

Responsible for Module:

Schloter, Michael; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Mikrobielle Ökologie und Mikrobiome (Vorlesung, 2 SWS) Schloter M, Schulz S

Ökologische Mikrobiologie in der Praxis (Seminar, 2 SWS) Schloter M, Schulz S

CH0953: Bioinorganic Chemistry | Bioanorganische Chemie

Version of module description: Gültig ab summerterm 2024

Module Level:	Language:	Duration:	Frequency:
Bachelor	German/English	one semester	summer semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		105	45

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung für das Modul wird in Form einer Klausur (90 Minuten) erbracht, die die Lernergebnisse des Moduls abprüft. Dabei beziehen sich 2/3 der Prüfungsfragen auf das Themengebiet der Bioanorganischen Chemie und 1/3 der Prüfungsfragen auf das Themengebiet der Spurenanalytik.

In der Bioanorganische Chemie wird überprüft, ob die Studierenden die Rolle von Metallen in biologischen Prozessen bewerten können. Hierbei müssen die Studierenden ihr Wissen z.B zur Aufnahme und Transport von Metallen, ionenspezifische Kanäle und Poren, Eisenstoffwechsel, Stofftransport, Proteinfaltung und Cross Linking abrufen, kombinieren und zur Problemlösung einsetzen.

In der Spurenanalytik sollen die Studierenden zeigen, dass sie wissen, wie Analyseverfahren (z.B. ASS, OES, MS, RFA und HPLC) richtig geplant, angewandt und durchgefürt werden. Sie können analytische Ergebnisse bewerten, analysieren und weiter verarbeiten.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Module der Anorganischen Chemie und Biochemie1, 2 und 3.

Content:

Vorlesungsteil Bioanorganische Chemie: Koordinationschemie der Übergangsmetalle in biologischen Systemen, Aufnahme und Transport von Metallen durch Zellmembranen, ionenspezifische Kanäle und Poren, Eisenstoffwechsel, Ionenpumpen, Sauerstofftransport, Faltung über Metallionen und Cross-Linking von Biomolekülen, Metalloenzyme, Metalle in der Medizin, Biomineralisation.

Vorlesungsteil Spurenanalytik: Analysenverfahren, Probennahme, Probenvorbereitung, Nachweis/Bestimmung, Bewertung analytischer Ergebnisse/Qualitätssicherung. Instrumentelle Techniken

der Elementanalytik, z.B. Atomabsorptionsspektrometrie (AAS), Optische Emissionsspektrometrie (OES), Röntgenfluoreszenzanalyse (RFA), Massenspektrometrie (MS) und Kopplungstechniken. Praxisbezogene Beispiele moderner Elementanalytik.

Ausgewählte Trenntechniken u.a. Dünnschichtchromatographie (TLC, HPTLC), Überkritische Flüssigchromatographie und Extraktion (SCFC/SCFE), Gegenstromverteilungschromatographie (CCC), Kapillarelektrophorese (CE), Feld-Fluss-Fraktionierung (FFF), Chemo- und Biosensoren.

Intended Learning Outcomes:

Nach der Teilnahme am Modul sind die Studierenden in der Lage, die Rolle von Metallen in biologischen Prozessen zu verstehen. Sie können die wesentlichen Veränderungen einschätzen, die durch die Zusammenwirkung von Metallionen in Proteinen und anderen Biomolekülen entstehen. Nach der Teilnahme am Modul sind die Studierenden auch in der Lage, die Grundprinzipien moderner analytischer Verfahren (Elementanalytik und Trenntechniken) zu verstehen und die Anwendungsbereiche der Methoden problemorientiert zu unterscheiden. Die Studierenden sind außerdem in der Lage, analytische Ergebnisse richtig zu bewerten und für reale analytische Aufgabenstellungen zielorientierte Analysestrategien zu entwickeln.

Teaching and Learning Methods:

Das Modul besteht aus zwei Vorlesungen (3 SWS; Bioanorganische Chemie und Spurenanalytik). Die Inhalte werden im Vortrag und durch Präsentationen vermittelt. Studierende sollen zur inhaltlichen Auseinandersetzung mit den Themen und zum Studium weiterführender Literatur angeregt werden.

Media:

Präsentation an Tafel und über Beamer, Skript.

Reading List:

Vorlesungsskripte; W. Kaim und B. Schwederski, Bioanorganische Chemie. Zur Funktion chemischer Elemente in Lebensprozessen. 2. Aufl., Teubner (1995). S. J. Lippard und J. M. Berg, Bioanorganische Chemie. Spektrum Akademischer Verlag, Heidelberg (1995) J. A. Cowan, Inorganic Biochemistry - An Introduction. 2. Aufl., WILEY-VCH (1997). Skoog Leary, Instrumentelle Analytik - Grundlagen, Geräte, Anwendungen, Springer Daniel C. Harris, Lehrbuch der Quantitativen Analyse, Friedrich Vieweg und Sohn Georg Schwedt, Analytische Chemie-Grundlagen, Methoden und Praxis, Georg Thieme Verlag Analytical Chemistry (Ed. Kellner, Mermet, Otto, Valcarcel, Widmer, VCH-Wiley) Instrumentelle Analytische Chemie (Ed. Karl Cammann, Spektrum Akademischer Verlag). Oder neuere Auflagen der genanten Lehrbücher.

Responsible for Module:

Groll, Michael; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Bioanorganische Chemie (CH0648/CH0953) (Vorlesung, 2 SWS) Groll M (Haslbeck M)

Spurenanalytik für Studierende der Biochemie (CH0953) (Vorlesung, 1 SWS) Ivleva N, Seidel M

WZ2450: Introduction to Mycology | Einführung in die Mykologie

Version of module description: Gültig ab winterterm 2022/23

Module Level:	Language:	Duration:	Frequency:
Master	German	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	60	90

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Regular and active student participation is expected. A written exam (60 min, graded) serves as proof of the theoretical knowledge acquired in the lecture and practical courses. In the exam, the students demonstrate their ability to structure the body of acquired knowledge and to summarize the important aspects of the study matter. The students should be able to describe, interpret, combine in a meaningful way the information learnt, and to transfer this knowledge to similar issues. The grade of the exam represents the total grade of the module.

Repeat Examination:

(Recommended) Prerequisites:

Es werden Grundkenntnisse in Biologie erwartet, sowie die in den Grundvorlesungen der Biologie und Mikrobiologie vermittelten Inhalte. Zum besseren Verständnis sind Grundkenntnisse in anorganischer und organischer Chemie erforderlich.

Content:

Im Rahmen der Vorlesung werden Grundkenntnisse über Pize und Hefen vermittelt. Inhalte sind u.a.: System der Pilze, Morphologie, Differenzierungsmethode, usw. Im Rahmen der Mykologischen Übungen werden grundlegende Methoden zu praktischen Arbeiten mit pilzlichen Mikroorganismen vermittelt, u.a. Identifikation von Pilzen mit Hilfe mikroskopischer und phänotypischer Methoden; Demonstrationen zu Wachstums- und Stoffwechseleigenschaften von Pilzen; Anreicherung und Isolierung aus Proben mit Hilfe geeigneter Nährmedien; Beherrschung des sterilen Arbeitens und der Mikroskopie; Herstellung von Präparaten.

Intended Learning Outcomes:

Ziele des Moduls sind es, einen Einblick in das System der Pilze und ihre Morphologie, sowie in praktische Methoden zu Ihrer Identifizierung, Differenzierung und weitergehenden Untersuchung zu geben.

Lernziele sind:

- " Die wichtigsten Versuche zu den grundlegenden Themen der Mykologie verstehend nachvollziehen und technisch und manuell beherrschen.
- "Grundlegendes experimentelles Know-how inklusive Sicherheits- und Materialwissen (z.B. Beherrschung steriler Arbeitstechniken und phänotypische Identifizierung von Mikroorganismen) erwerben, das sowohl bei bekannten eingeübten Versuchen wie auch bei unbekannten aus der Literatur zu erschließenden Versuchen eingesetzt werden kann.
- " Kritisches und kreatives Denken fördern sowie Fähigkeiten zum Lösen von Problemen entwickeln.
- " Interesse an Mikrobiologie, mikrobiologischen Problemen und die Bedeutung von Mikroorganismen für Mensch und Umwelt fördern.

Teaching and Learning Methods:

Veranstaltungsform/Lehrtechnik: Vorlesung mit begleitende Demonstrationen und Übungen mit Vorbesprechung zu den einzelnen Versuchen.

Lernaktivität: Üben von technischen und labortechnischen Fertigkeiten; Einüben der Beobachtung von Präparaten; Anfertigung von Protokollen

Media:

Präsentationen mittels Powerpoint, Demonstrationen

Reading List:

Es ist kein Lehrbuch verfügbar, das alle Inhalte dieses Moduls abdeckt.

Responsible for Module:

Köberle, Martin, Dr. rer. nat. martin.koeberle@tum.de

Courses (Type of course, Weekly hours per semester), Instructor:

Mykologische Übungen (Übung, 5 SWS) Liebl W [L], Köberle M

Einführung in die Mykologie (Vorlesung, 1 SWS)

Liebl W [L], Köberle M

WZ2516: Introduction to Plant Developmental Genetics | Einführung in die Entwicklungsgenetik Pflanzen

Version of module description: Gültig ab winterterm 2010/11

Module Level:	Language:	Duration:	Frequency:
Bachelor	German/English	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	70	80

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsdauer (in min.): 20 mündlich + praktisch (SL).

Regelmäßige, aktive Teilnahme an der Lehrveranstaltung wird erwartet. Die Prüfungsleistung wird zu jeweils 1/3 in Form der Mitarbeit während des Praktikums, einer Präsentation, und eines Protokolls erbracht und entsprechend benoted. Die Mitarbeit während des Praktikums dient der Überprüfung der gedanklichen Präsenz und Mitarbeit. Zur Kontrolle des Verständnisses sowie der Fähigkeit zur Beschreibung, Auswertung und Interprätation der im Praktikum durchgeführten Experimente ist ein Protokoll zu führen, welches überprüft wird. In der Präsentation zeigen die Studierenden, ob sie in der Lage sind, das erlernte Wissen zu strukturieren und die wesentlichen Aspekte darzustellen. Die Gesamtnote des Moduls setzt sich zu gleichen Teilen aus den drei Einzelnoten zusammen.

Repeat Examination:

(Recommended) Prerequisites:

Zum besseren Verständnis der Vorlesung sind gute Kenntnisse in Genetik, Molekularbiologie sowie Zellbiologie erforderlich.

Content:

In diesem Kurs werden grundlegende molekulargenetische Ansätze und Konzepte der Pflanzenentwicklung dargelegt und am Beispiel des Kreuzblütlers Arabidopsis thaliana eingeführt. Arabidopsis hat sich als herausragendes Modellsystem zum Studium einer grossen Anzahl von Fragestellungen herauskristallisiert. Probleme der Entwicklungsbiologie, der Physiologie, der Abwehrmechanismen gegenüber Pathogenen etc werden an diesem Modellsystem studiert.

Inhalte sind:

- Grundaspekte der zellulären und subzellulären Morphologie bei Arabidopsis
- klonale Analyse der Blattentwicklung
- das ABC-Modell der Blütenorganidentität
- Mutantenscreens und "activation tagging"
- molekulare Identifikation getaggter Genes
- Literatursuche/Präsentation der Befunde

Intended Learning Outcomes:

Die Studierenden erwerben ein grundsätzliches Verständnis von ausgewählten Konzepten und experimentellen Techniken der pflanzlichen Entwicklungsbiologie. Die Studierenden sind in der Lage genetische Ansätze in der Entwicklungsbiologie nachzuvollziehen. Desweiteren soll dieses Modul das Interesse an pflanzlicher Entwicklungsgenetik sowie generell an entwicklungsbiologischen Problemen fördern.

Teaching and Learning Methods:

Veranstaltungsform/Lehrtechnik: Vorlesung, Praktikum.

Lernaktivitäten: Studium von Vorlesungsskript, -mitschrift, und Literatur. Experimentalle Arbeit im Labor. Analyse und Präsentation eigener experimenteller Befunde.

Media:

Präsentationen mittels Powerpoint, Skript (Downloadmöglichkeit für Vorlesungsmaterial).

Reading List:

Es ist kein Lehrbuch verfügbar, das alle Inhalte dieses Moduls abdeckt. Als Grundlage oder zur Ergänzung wird empfohlen:

Smith, A.M., Coupland, G., Dolan, L., Harberd, N., Jones, J., Martin, C., Sablowski, R., Amey, A. (2010) "Plant Biology", Garland Science, UK.

Leyser, O., Day, S. (2003) "Mechanisms in Plant Development", Blackwell Publishing, Oxford, UK.

Responsible for Module:

Kay Schneitz (schneitz@wzw.tum.de)

Courses (Type of course, Weekly hours per semester), Instructor:

WZ5012: Hygienic Processing 2 - Aseptic and Sterile Processing | Hygienic Processing 2 - Aseptik und Sterilprozesstechnik

Version of module description: Gültig ab summerterm 2013

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	120	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsdauer (in min.): 90. schriftliche Abschlußprüfung

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Content:

In der Vorlesung Hygienic Processing 2 werden Methoden zum Erreichen und Aufrechterhalten eines keimfreien Zustands von Produkt und Lebensmittelumgebung vorgestellt. Die Relevanz für die Lebensmittel- und Biotechnologie wird an charakteristischen Beispielen dargelegt. Konkrete Inhalte der Vorlesung Hygienic Processing 2 sind die Historie der Haltbarmachung, thermische und nicht-thermische Keiminaktivierung (Sterilfiltration, Kombinationsverfahren, ionisierende Strahlen) unter Berücksichtigung produkt- und prozesspezifischer Faktoren (flüssige Produkte, Produkte mit stückigem Anteil, Trockenstoffe Endotoxinproblematik, Inaktivierung von Prionen), Raum- und Oberflächenentkeimung, Biofilmbildung und Fouling sowie Reinraumtechik/Anlagenplanung und Qualitätsmanagementsysteme (HACCP/GMP, Hygienic Design)

Intended Learning Outcomes:

Es soll ein grundlegendes Verständnis zur Problematik des (sicheren) Erreichens und Erhaltens aseptischer Zustände in Lebensmitteln, biotechnologischen und pharmazeutischen Produkten unter besonderer Berücksichtigung der Wahrscheinlichkeit des Überlebens einzelner (Rest-)Keime bzw. einer Rekontamination vermittelt sowie ein grundlegendes Verständnis der

Sterilprozesstechnik generiert werden. Die Studenten sollen die Grenzen und Leistungsmerkmale verschiedener Verfahren einschätzen und deren Eignung produktspezifisch bewerten können.

Teaching and Learning Methods:

Die Inhalte werden in einer Vorlesung vermittelt

Media:

Eine Foliensammlung für diese Vorlesung ist online verfügbar

Reading List:

Responsible for Module:

Ulrich Kulozik ulrich.kulozik@tum.de

Courses (Type of course, Weekly hours per semester), Instructor:

Hygienic Processing 2 – Aseptic and Sterile Processing (Vorlesung, 2 SWS) Gastl M, Cotterchio D, Berteit A

IN8003: Introduction to Informatics | Informatik

Version of module description: Gültig ab summerterm 2017

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	150	90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Type of Assessment: exam

The exam takes the form of written 60 minutes test. Knowledge questions allow to assess acquaintance with and understanding of the basic concepts of Computer Science. Small programming and modelling problems allow to assess the ability to practically apply the learned programming- and query-languages and modelling-techniques for the solution of small problems.

In case of epidemiologic emergencies, the exam may be substituted by a graded electronic exercise or a proctered exam.

If very few students register for the exam, the exam may (after consulting the students) be optionally be held as an oral exam.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Recommended requirements are Mathematics modules of the first year of the participating bachelor's programs.

Content:

The module is concerned with topics such as:

- Database Management Systems, ER models, Relational Algebra, SQL
- Java as a programming language:
- ++ basic constructs of imperative programming (if, while, for, arrays etc.)
- ++ object-oriented programming (inheritance, interfaces, polymorphism etc.)
- ++ basics of Exception Handling and Generics
- ++ code conventions

- ++ Java class library
- Basics of Visual Basic for Applications
- Basic algorithms and data structures:
- ++ algorithm concept, complexity
- ++ data structures for sequences (arrays, doubly linked lists, stacks & queues)
- ++ recursion
- ++ hashing (chaining, probing)
- ++ searching (binary search, balanced search trees)
- ++ sorting (Insertion-Sort, Selection-Sort, Merge-Sort)

Intended Learning Outcomes:

Upon successful completion of the module, participants understand important foundations, concepts and ways of thinking of Computer Science, in particular object-oriented programming, databases and SQL, and basic algorithms and data structures, have an overview over these topics and be able use them for the development of own programs with a link to a database in a basic way.

Teaching and Learning Methods:

Lecture and practical central tutorial: In the central tutorial deepens the understanding of the concepts introduced in the lecture and teaches practical programming skills using example assignments. Lecture and central tutorial are very closely linked. Homework assignments are provided which are intended to be solved autonomously and intended to practice the practical programming and modeling skills, in order to be able to apply the knowledge acquired by self-study of the accompanying materials of lecture and central tutorial for autonomously solving small problems.

Media:

Slides, blackboard, lecture- and central tutorial recording, discussion boards in suitable e-learning platforms

Reading List:

Chapters from textbooks, which are closely associated with the module content and are provided to the students online.

Responsible for Module:

Groh, Georg; Prof. Dr. rer. nat. habil.

Courses (Type of course, Weekly hours per semester), Instructor:

Einführung in die Informatik für andere Fachrichtungen (IN8003) (Vorlesung mit integrierten Übungen, 4 SWS)

Groh G

WZ2646: Molecular Plant Biology and Plant Breeding | Molekulare Pflanzenbiologie und Züchtung

Version of module description: Gültig ab summerterm 2024

Module Level:	Language:	Duration:	Frequency:
Bachelor	German/English	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The written exam (120 min) serves to test the theoretical skills acquired by the students.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Basic knowledge of genetics and molecular biology

Content:

The lecture Molecular Plant Biology deals with using plants as sustainable solutions for global crises, including climate (climate protection, adaptation, and resilience), food security, and soil regeneration. Practical application examples, including start-up ideas, are explained. At the same time, the lecture provides the necessary theoretical foundations of plant molecular biology to address practical issues. The basics of plant genetics, identification and structure of genes, function, and regulation of gene expression, genome analysis, and functional genomics are explained using the model organism Arabidopsis thaliana. The lecture also deals with plant transformation, signal transduction, development and membrane traffic, proteolysis, and systems biology.

In the lecture Molecular Plant Breeding, the basics of classical and molecular plant genetics are taught using the example of cultivated plants. Divided into "Forward" and "Reverse Genetics", approaches to gene and genome mapping in crop plants for monogenic and polygenic traits, physical genome mapping and genome sequencing, map-based cloning, characterization of mutants and approaches to gene isolation are covered. Further aspects describe genetic diversity using molecular markers and transgenic crops.

Intended Learning Outcomes:

After successfully completing the module, students will have a detailed understanding of the function of genes and their regulation as a basis for genetic engineering, as well as a sense of developments in functional genomics and systems biology. Furthermore, students gain insights into using plants to solve global problems.

In addition, students know and understand the methods and research concepts of genome analysis and molecular genetics in agricultural crops.

Teaching and Learning Methods:

Lecture, discussion, group work, summary

Media:

Powerpoint presentation, board address

Reading List:

Lecture Molecular Plant Biology:

Lewin's Genes X: ISBN-13: 9781449659851; Molecular Cell Biology, Seventh Edition; ISBN-10: 1-4292-3413-X; Plant Biology. ISBN-13: 978-0815340256 © 2010 first edition

Lecture Molecular Plant Breeding:

Griffiths et al, Introduction to Genetic Analysis (10th edition): ISBN-13: 978-1-4292-7634-4; T.A. Brown: Genomes and Genes - Textbook of Molecular Genetics; ISBN: 978-3-8274-1843-2; H. Becker, Plant Breeding (2nd edition): ISBN-13: 978-3-8252-3558-1

Responsible for Module:

Assaad-Gerbert, Farhah, Apl. Prof. Prof. Dr. farhah.assaad@tum.de Schön, Chris-Carolin, Prof. Dr.sc.agr. habil. chris.schoen@tum.de

Courses (Type of course, Weekly hours per semester), Instructor:

Molekularbiologie der Pflanzen [WZ0332] (Vorlesung, 2 SWS) Assaad-Gerbert F, Wiese C

Molekulare Pflanzenzüchtung [WZ2014] (Vorlesung, 2 SWS) Schön C [L], Frey M, Barl L, Liebthal M For further information in this module, please click campus.tum.de or here.

WZ2457: Neurobiology | Neurobiologie

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German	one semester	winter semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Studierenden zeigen in einer benoteten Klausur (90 min), das sie in der Lage sind in einer begrenzten Zeit und ohne Hilfsmittel die zugrunde liegenden Mechanismen und Randbedingungen neurobiologischer Prozesse zu verstehen und darzulegen. Sie müssen neurobiologische Befunde auf ihre entwicklungsbiologischen und molekularbiologischen Ursachen zurückführen, komplexe Krankheitsbilder in ihrer Entstehung beurteilen, und physiologische Erklärungen für Gehirnleistungen darstellen. In Transferaufgaben sind sie in der Lage, auf der Basis des erworbenen Orientierungswissens der gesamten Neurobiologie Befunde einzuordnen und einzuschätzen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Successful participation in the lecture "Human and Animal Physiology"

Content:

Basic Neuroscience: development of the nervous system, neurophysiology, biophysics, synaptic transmission, learning, emotions, speech, degenerative brain diseases, mental diseases, consciousness.

Intended Learning Outcomes:

Students will aquire a basic knowledge of the entire neuroscience spectrum, will learn to build upon that basis and to integrate new data, will have insight into current research fields.

Teaching and Learning Methods:

Teaching method: Lecture

Teaching method: Presentation, lecture, question-developing method Learning activities: studying the basic information provided, reviewing the information provided, researching material, summarising documents

Media:

A script for this practical course will be handed out or made available for download on Moodle. Additional information will be communicated on Moodle (URLs, further texts)

Reading List:

Bear et al., Neurowissenschaften

Responsible for Module:

Luksch, Harald; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Neurobiologie (Vorlesung, 2 SWS) Luksch H, Weigel S

WZ0402: Structural Bioinformatics | Strukturbioinformatik [Structural Bioinformatics]

Version of module description: Gültig ab summerterm 2021

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German/English	one semester	winter semester
Credits:*	Total Hours: 150	Self-study Hours:	Contact Hours:
5		90	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The module test involves a graded written exam.

The goal of the written exam (90 minutes) is to assess how well the students understand the basic concepts of protein structure analysis and prediction (like protein structure visualization, secondary structure assignment, tertiary structure assignment, quality of protein structure data, structural domains, signal peptides, intra protein contacts, structure function relationship) and how well they are able to reproduce them in limited time. Based on exemplary method calls, interrogation of input and output of methods, as well as the building of possible method pipelines to solve a specific bioinformatics problem, and the interpretation of method results, it is assessed how well the students are able to do bioinformatics analyses on their own, choose appropriate methods suitable to a specific problem and apply these. No electronic devices are allowed except for pocket calculators. Students are asked to write free-text answers to questions, solve algorithmic and logical problems, and to work through a limited number of multiple-choice questions by ticking the right answer.

To pass the module at least the score 4.0 is required.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Grundkenntnisse in der Bioinformatik (Sequenzanalyse, molekulare Evolution) Grundkenntnisse in der Zellbiologie/Biochemie Grundkenntnisse in der Statistik

Content:

The following topics are core elements of the module:

- protein structure visualization
- secondary structure assignment
- tertiary structure assignment
- quality of protein structure data
- structure databases
- structure comparison
- structural domains
- protein folding
- secondary structure prediction
- ab initio 3D structure prediction
- homology modelling
- threading
- signal peptides
- intra protein contacts
- structure function relationship

Intended Learning Outcomes:

The following topics are core elements of the module:

- protein structure visualization
- secondary structure assignment
- tertiary structure assignment
- quality of protein structure data
- structure databases
- structure comparison
- structural domains
- protein folding
- secondary structure prediction
- ab initio 3D structure prediction
- homology modelling
- threading
- signal peptides
- intra protein contacts
- structure function relationship

Teaching and Learning Methods:

The selected teaching approach Lecture course and the selected teaching method Oral talk are especially well suited for imparting basic concepts, methodological approaches as well as typical problems of structural bioinformatics to students with basic knowledge of bioinformatics. In particular the exercise serves as a way to deepen the learning content of the lecture. The students are expected to prepare a scientific publication covering an already discussed topic from the lecture. In the exercise the algorithms and methods used in the publication are discussed. Where possible, the usage of the methods and the analysis of selected case studies from the publication is presented in class. Thus, also the application of the methods is trained. It will be announced before each exercise which scientific publication will be discussed. The students are encouraged to

prepare the contents of the paper and familiarize their selves with the methods used. The lecturer discusses the procedures and methods in the exercise, and responds to questions and problems. Where possible, small selected case studies are solved together in the exercise, or are presented by students.

Media:

Scientific publications, presentation of slides, discussions during lectures, materials on the module Web page.age.

Reading List:

- Bourne & Weissig, Structural Bioinformatics
- Understanding Bioinformatics, M. Zvelebil and J.O.Baum, Garland Science 2008

Responsible for Module:

Frischmann, Dimitri; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Strukturbioinformatik (VO und UE) (Vorlesung, 4 SWS)

Frischmann D [L], Frischmann D, Parr M

General Education Subject | Allgemeinbildendes Fach

Module Description

WZ2674: Challenges of Biomedicine. Social, Political and Ethical Aspects of Medical Biology | Herausforderungen der Biomedizin. Soziale, politische und ethische Dimension der medizinischen Biologie

Version of module description: Gültig ab summerterm 2016

Module Level:	Language:	Duration:	Frequency:
Master	German/English	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
5	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Regelmäßige Anwesenheit und aktive Teilnahme am Seminar, Lektüre und Vorbereitung der Basisliteratur, Gestaltung von kleineren Inputelementen für das Seminar (Referat/Sitzungsmoderation)

Schriftliche Abschlussarbeit (Hausarbeit)

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Content:

Welche Rolle spielt die Biomedizin in der heutigen Gesellschaft? Welche sozialen, politische und ethischen Fragen werfen neues biomedizinisches Wissen und biomedizinische Technologien auf? Wie verändern neue molekulare Perspektiven unser Selbstverständnis als Menschen, sowie die Art und Weise, wie wir über Körper, Krankheit, Gesundheit und deren Umwelten nachdenken? Neue biomedizinsche Wissensformen und Technologien formen Gesellschaft vielfältig. Sie sind oft von großen gesellschaftlichen und ökonomischen Hoffnungen begleitet, aber auch von kontroversen Debatten, die nach den Risiken und Konsequenzen dieses neuen Wissens fragen. So etwa im Bereich der Stammzellforschung, der Reproduktionsmedizin, der genetischen Diagnostik, der Neurobiologie oder neuer epigenetischer Modelle von Körper-Umwelt-Interaktionen. Hier entstehen neue Konzepte von gesundheitlichem Risiko, neue individuelle

und gemeinschaftliche Handlungsräume, aber auch neue Formen von Verantwortung, Schuld und möglicherweise auch neue Formen der Diskriminierung. Auf staatlicher Ebene muss überlegt werden, wie neue Technologien reguliert, zugänglich gemacht und finanziert werden können und sollen. Privatwirtschaftliche Perspektiven fokussieren auf die Patentierbarkeit von biomedizinischen Innovationen, aber auch von biotechnologisch veränderten Lebewesen. Im medizinschen System stellt sich die Frage wie neue biomedizinische Technologien und Krankheitskonzepte in den Klinik- und Pflegealltag eingeflochten werden können und was dies für Behandelte und Behandelnde bedeuten kann. Das 21. Jahrhundert ist damit gezeichnet von einer vielschichtigen, neuen "Biopolitik", für die Wissenschaft und Technik eine entscheidende Rolle spielen. Anhand von Beispielen aus aktuellen Debatten um biomedizinische Innovationen werden wir in diesem Modul Iernen, wie soziale, politische und ethische Fragen in diesem Kontext erkannt und analysiert werden können. Ziel des Moduls ist es, ein Verständnis dafür zu entwickeln, wie biomedizinisches Wissen und biomedizinische Technologien Teil unserer Gesellschaft werden, welche Herausforderungen, Möglichkeiten und Spannungsverhältnisse sichtbar werden und welche Handlungsmöglichkeiten identifizieren werden können.

Intended Learning Outcomes:

Nach erfolgreichem Absolvieren des Moduls erwerben Studierende die Fähigkeit sich zu soziilen, politischen und ethischen Fragen an der Schnittstelle von Biomedizin und Gesellschaft kompetent zu positionieren, indem sie verschiedene gesellschaftliche und wissenschaftliche Positionen zu diesen Themen kritisch reflektieren, sowie eigene Einschätzungen artikulieren können. Studierende erwerben in diesem Sinne im Laufe der Lehrveranstaltung die Kompetenzen 1) Soziale, politische und ethische Fragen an der Schnittstelle von Biomedizin und Gesellschaft zu identifizieren; 2) Wissenschaftliche Texte, die entlang von Fallstudien die Beziehung von neum biomedizinischen Wissen/ Biotechnologien und Gesellschaft beschreiben, zu lesen, zu diskutieren und die Kernargumente zu verstehen; 3) Eigenständig aktuelle Debatten in Gesellschaft, Medien und Politik zu Biomedizin und Gesellschaft zu recherchieren; 4) Die erworbenen Analysefähigkeiten auf diese aktuellen gesellschaftlichen Debatten anzuwenden und die Beziehungen zwischen Biomedizin und Gesellschaft in den selbstrecherchierten Fallstudien kritisch zu reflektieren und zu diskutieren, sowie eigene Fragen und Einschätzungen zu formulieren.

Teaching and Learning Methods:

Lektürearbeit; angeleitete Gruppenarbeiten zur Diskussion und Vertiefung des Textverständnisses und zur Entwicklung eigener Fragen; Diskussion im Plenum; Inputelemente von Seiten der Studierenden wie Kurzreferate oder Sitzungsmoderation; eigenständige Recherchen zu Themen im Kontext der Lehrveranstaltung; schriftliche Hausarbeit als Abschluss der Lehrveranstaltung.

Media:

PowerPoint, Moodle, Flipchart, Film(ausschnitte), Reader

Reading List:

Beispiele (im Kurs werden Auszüge/Kapitel gelesen)

WZ2674: Challenges of Biomedicine. Social, Political and Ethical Aspects of Medical Biology | Herausforderungen der Biomedizin. Soziale, politische und ethische Dimension der medizinischen Biologie

Dickel/Franzen/Kehl (Hg.) (2011): Herausforderung Biomedizin. Gesellschaftliche Deutung und soziale Praxis. Bielefeld: transcript.

Dumit, Joseph (2004): Picutring Personhood. Brain Scans and Biomedical Identity. Princeton: Princeton University Press.

Liebsch/Manz (Hg.) (2010): Leben mit den Lebenswissenschaften. Wie wird biomedizinisches Wissen in Alltagspraxis übersetzt? Bielefeld: transcript.

Niewöhner/Kehr/Vailly (Hg.) (2011): Leben in Gesellschaft. Biomedizin – Politik – Sozialwissenschaften. Bielefeld: transcript.

Reardon, Jenny (2005): Race to the Finish: Identity and Governance in an Age of Genomics. Princeton: Princeton University Press.

Thompson, Charis (2013): Good Science: The Ethical Choreography of Stem Cell Research. Cambridge, MA: MIT Press.

Responsible for Module:

Prof. Dr. Ruth Müller

Courses (Type of course, Weekly hours per semester), Instructor:

Herausforderungen der Biomedizin. Soziale, politische und ethische Dimension der medizinischen Biologie. (WZ2674) (Seminar, 2 SWS)

Lammar D, Schönwolff M

WZ2457: Neurobiology | Neurobiologie

Version of module description: Gültig ab winterterm 2023/24

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German	one semester	winter semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Studierenden zeigen in einer benoteten Klausur (90 min), das sie in der Lage sind in einer begrenzten Zeit und ohne Hilfsmittel die zugrunde liegenden Mechanismen und Randbedingungen neurobiologischer Prozesse zu verstehen und darzulegen. Sie müssen neurobiologische Befunde auf ihre entwicklungsbiologischen und molekularbiologischen Ursachen zurückführen, komplexe Krankheitsbilder in ihrer Entstehung beurteilen, und physiologische Erklärungen für Gehirnleistungen darstellen. In Transferaufgaben sind sie in der Lage, auf der Basis des erworbenen Orientierungswissens der gesamten Neurobiologie Befunde einzuordnen und einzuschätzen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Successful participation in the lecture "Human and Animal Physiology"

Content:

Basic Neuroscience: development of the nervous system, neurophysiology, biophysics, synaptic transmission, learning, emotions, speech, degenerative brain diseases, mental diseases, consciousness.

Intended Learning Outcomes:

Students will aquire a basic knowledge of the entire neuroscience spectrum, will learn to build upon that basis and to integrate new data, will have insight into current research fields.

Teaching and Learning Methods:

Teaching method: Lecture

Teaching method: Presentation, lecture, question-developing method Learning activities: studying the basic information provided, reviewing the information provided, researching material, summarising documents

Media:

A script for this practical course will be handed out or made available for download on Moodle. Additional information will be communicated on Moodle (URLs, further texts)

Reading List:

Bear et al., Neurowissenschaften

Responsible for Module:

Luksch, Harald; Prof. Dr. rer. nat.

Courses (Type of course, Weekly hours per semester), Instructor:

Neurobiologie (Vorlesung, 2 SWS) Luksch H, Weigel S

ED0180: Philosophy and Social Sciences of Technology | Philosophie und Sozialwissenschaft der Technik

Version of module description: Gültig ab summerterm 2011

Module Level: Bachelor	Language: German	Duration: one semester	Frequency: summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
3	90	00	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsdauer (in min.): semesterbegleitende Online-Aufgaben.

Studienleistungen - Besuch der Vorlesung im Umfang von 2 SWS (2 SWS = 1 CP); - Lektüre von Texten (30 h = 1 CP); - Bearbeitung der drei Onlineaufgaben (30 h = 1 CP) Das Semester begeleitend werden drei schriftliche Aufgaben zu Teilabschnitten des Vorlesungsinhaltes gestellt, die individuell zu bearbeiten sind. Die Aufgabenstellung erfolgt online. Bearbeitungszeit ist jeweils 7 Tage. Die Ergebnisse der Online-Aufgaben werden über TUMonline bekannt gegeben. Die Prüfungsnote wird aus den Ergebnissen der drei Online-Aufgaben gebildet. Eine Wiederholung in Form einer mündlichen Prüfung ist möglich; Voraussetzung hierfür ist die vorangehende Beteiligung an den Online-Aufgaben. Bei Nichtbestehen der Nachprüfung ist das gesamte Modul zu wiederholen.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

keine

Content:

In dieser Vorlesung werden philosphische und sozialwissenschaftliche Perspektiven zur Betrachtung und Beurteilung von Technik erarbeitet. Es wird untersucht, welche politischen, soziologischen und ökonomischen Dimensionen moderner Technik unser Leben mitbestimmen und wie soziale

Faktoren in die Gestaltung von Technik eingehen.

Intended Learning Outcomes:

Ziel der Veranstaltung ist es, jenseits natur- und ingenieurwisenschaftlicher Spezialisierung ein umfassendes Bild von den Wirkungsformen und den meist nur stillschweigend mitgedachten, gesellschaftlichen Funktionsvoraussetzungen moderner Technik zu vermitteln.

Teaching and Learning Methods:

mit medialer Unterstützung

Media:

elektronische Vorlesungsskripte, Präsentationen

Reading List:

Je spezifisch zu den einzelnen Vorlesungswochen im Skript angegeben.

Responsible for Module:

Ulrich Wengenroth (ulrich.wengenroth@mytum.de)

Courses (Type of course, Weekly hours per semester), Instructor:

ED0179: Technology, Nature and Society | Technik, Natur und Gesellschaft

Version of module description: Gültig ab winterterm 2011/12

Module Level:	Language:	Duration:	Frequency:
Bachelor	German	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsdauer (in min.): semesterbegleitende Online-Aufgaben.

Studienleistungen - Besuch der Vorlesung im Umfang von 2 SWS (2 SWS = 1 CP); - Lektüre von Texten (30 h = 1 CP); - Bearbeitung der drei Onlineaufgaben (30 h = 1 CP) Das Semester begeleitend werden drei schriftliche Aufgaben zu Teilabschnitten des Vorlesungsinhaltes gestellt, die individuell zu bearbeiten sind. Die Aufgabenstellung erfolgt online. Bearbeitungszeit ist jeweils 7 Tage. Die Ergebnisse der Online-Aufgaben werden über TUMonline bekannt gegeben. Die Prüfungsnote wird aus den Ergebnissen der drei Online-Aufgaben gebildet. Eine Wiederholung in Form einer mündlichen Prüfung ist möglich; Voraussetzung hierfür ist die vorangehende Beteiligung an den Online-Aufgaben. Bei Nichtbestehen der Nachprüfung ist das gesamte Modul zu wiederholen.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

keine

Content:

Wir leben in einer Zeit, in der die Technik nicht mehr als abgegrenztes Subsystem, sondern vielmehr als Superstruktur der Gesellschaft und des Lebens erfahren wird, die all ihre Existenzund Erscheinungsformen durchdringt. Noch unlängst vorherrschende Vorstellungen von einer strikten Trennung zwischen Technik und Natur bzw. zwischen Technischem und Lebendigen sind obsolet geworden. Eine Vielzahl von Lebensprozessen läuft technisch vermittelt ab (Geburt, Tod, Bewegung, Ernährung usw.) und Entwicklungen wie die der Gentechnik zeugen davon, dass die Natur selbst in einen Zustand der technischen Reproduzierbarkeit überführt worden ist. In der

Vorlesung wird die Erosion der Grenzen zwischen Technik, Natur und Gesellschaft aufgezeigt und über ihre Konsequenzen für die Spielräume menschlichen Handelns nachgedacht.

Intended Learning Outcomes:

TN sind in der Lage, unsere Vorstellungen von Technik und Natur als kulturelle Konstrukte zu analysieren, mit denen wir vor allem Aussagen über den Zustand unserer Gesellschaft und unser Selbstverständnis machen. Sie können darstellen, wie sich unsere Naturvorstellungen im Zuge des Übergangs zur prinzipiell nicht-nachhaltigen Wirtschafts- und Lebensweise der Moderne verändert haben.

Teaching and Learning Methods:

Vorlesung, Selbststudium, Schreiben von kleineren thematischen Abhandlungen

Media:

elektronische Skripten, Präsentationen

Reading List:

Radkau, Joachim, Natur und Macht. Eine Weltgeschichte der Umwelt, München 2002, Sieferle, Rolf Peter, Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt, München 1997,

Bayerl, Günter, Prolegomenon der Großen Industrie. Der technisch-ökonomische Blick auf die Natur im 18. Jahrhundert, in: Werner Abelshauser (Hg.), Umweltgeschichte. Umweltverträgliches Wirtschaften in historischer Perspektive; acht Beiträge, Göttingen 1994, S. 29-56 pp.

Responsible for Module:

Zetti, Daniela; Prof. Dr.sc. ETH Zürich

Courses (Type of course, Weekly hours per semester), Instructor:

Technik, Natur und Gesellschaft (Vorlesung, 2 SWS)

Reichenberger A (Goricki-Eickel T)

MCTS9003: Technology and Democracy | Technik und Demokratie

Version of module description: Gültig ab winterterm 2017/18

Module Level:	Language:	Duration:	Frequency:
Bachelor	English	one semester	winter semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
2	60	30	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The examination takes place as a project by student working groups. The students are asked to propose a process that could democratise a selected process of technology development. The proposals of the working groups demonstrate each students' abilities to analyse, evaluate and develop a democratic innovation process based upon the theoretical and empirical insights of the course. The examination is based upon an individual, brief reflexive report containing no more than 800 words (2/3 of final grade) and a presentation by the working groups taking no longer than ten minutes (1/3 of final grade). Within the presentations, individual effort and competence is graded. The aim of this format of examination is the focused and thus written and self-responsible application of methods and knowledge gathered within the module. Group presentations as a second format of examination ensure practical insights into chances and hindrances of democratising technology development.

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Content:

We are living through times of extraordinary technological and societal change. Ever more pressing is the question about how we can collectively shape the processes of technological innovation to decide how we want to live in the future. This module develops different insights into the relationships between technology, society and democracy. We explore how these relationships have come into existence and what the contemporary challenges in highly technologised societies are, where the development of technology is an important source of societal power and the basis of our way of living. This involves working with empirical examples and social science theory to first, understand that technology is thoroughly entwined with society and second, that the

ideals and approaches of "democracy" transcend the domain of institutionalised politics such as governments and parliaments. This module will cover the role of engineers and other technological actors in society and explore approaches to democratically regulate innovation.

Intended Learning Outcomes:

At the end of the module students understand that the development and design of technologies, typically understood as engineering, is a form of societal power and that there are different demands in modern societies to democratically control or even democratise this power. Furthermore, the students are able discern that such demands are voiced in different ways in projects of technical development and in innovation processes. The students can explain the changing landscape of engineering and the different approaches to democratically legitimate and regulate innovation processes. Based on this they can make reflexive proposals on how democratic demands can be responded to by engineers and how engineers could themselves contribute to the democratisation of innovation.

Teaching and Learning Methods:

Lecture, Moodle, working groups, project documentation, group presentation. The presentations by the lecturer will provide the students with an overview about the history and contemporary approaches to the democratisation of technology. In working groups, students learn to apply this orientating knowledge to a concrete and exemplary innovation process.

Media:

PowerPoint, task sheets, smartphones, laptops, Moodle

Reading List:

Literature is mentioned in the lectures

Responsible for Module:

Sabine Maasen

Courses (Type of course, Weekly hours per semester), Instructor:

Technik und Gesellschaft (Vorlesung, 2 SWS)

Weitze M

WI000820: Marketing and Innovation Management | Marketing and Innovation Management

Version of module description: Gültig ab summerterm 2021

Module Level:	Language:	Duration:	Frequency:
Bachelor	German/English	one semester	summer semester
Credits:*	Total Hours: 180	Self-study Hours:	Contact Hours:
6		120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The grading will be based on a written exam (120 min). By answering multiple choiche questions students have to show that they have understood and can apply models and concepts related to markets aspects of innovation and to the organization of the innovation process. The questions also asses whether students remember and understand marketing basics (including key terms, theories, frameworks, the use of marketing strategies and marketing mix instruments, and their interrelationship with core concepts in marketing). The questions may require calculations. Students may use a non-programmable calculator to do these calculations.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

None

Content:

Market aspects of innovation:

- Innovation: Examples and particularities,
- Innovation and the development of industries,
- Sources of innovation,
- Innovation strategy: Analysis of the market, technology and competition,
- Acquisition of technology: Market, cooperation and networks

Organizing the innovation process:

- The innovation process within the firm,
- R&D, production and marketing,

- Cooperation for innovation?
- Motivation and incentive systems,
- Promotors and champions,
- Roles in the innovation process,
- Opposition against innovation within the firm,
- Integrating customers into the innovation process,
- Measuring and controlling innovation.

Marketing management:

- Principles of marketing,
- Marketing strategy and environment,
- Creating customer value, satisfaction, and loyalty,
- Information management and market research,
- Analyzing consumer and business markets,
- Competition and differentiation from competitors,
- Segmenting, targeting, and positioning,
- Creating and managing products and services, brand management,
- Pricing,
- Marketing communications, marketing channels, and service P's.

Intended Learning Outcomes:

At the end of the module, students will be able to (1) recognize and apply models and concepts related to the market aspects of innovation (e.g., modes of acquisition of technology) and to the organization of the innovation process (e.g., promotors and champions in the innovation process), (2) identify how they can be concretely used in companies, (3) remember and understand the key terms used in marketing, (4) explain common marketing theories and frameworks, (5) describe and justify the use of both marketing strategies and marketing mix instruments, and (6) relate the strategies and use of instruments to core concepts in marketing, such as customer lifetime value, segmenting, targeting, and positioning, decision making styles, customer-perceived value, satisfaction, and loyalty, as well as branding.

Teaching and Learning Methods:

The module consists of two lectures including one or two sessions held by guest speakers to refer to state of the art examples of marketing and innovation. Students will be motivated to read the literature before and after each lecture and relate it to the content taught in class. Furthermore, they will be motivated to discuss the content in online forums that are made available to the students.

This module is also offered at TUM Campus Straubing.

Media:

Lecture slides are available via Moodle. Presentation slides, online discussion forum

Reading List:

- Afuah Innovation Management. strategies, implementation, and profits
- Dodgson, Gann, Salter The Management of Technological Innovation (Chapter 4)
- Teece Profiting from Technological Innovation: Implications for integration, collaboration, licensing and public policy
- Stamm Structured Processes for Developing New Products
- Hauschildt, Kirchmann Teamwork for innovation the ""troika"" of promotors
- Kotler/Keller/Brady/Goldman/Hansen (2012): Marketing Management, 2nd European ed., Pearson: Harlow.
- Kotler/Armstrong (2014): Principles of Marketing, 15th ed., Pearson: Harlow.
- Homburg (2015): Marketingmanagement. Strategie Instrumente Umsetzung Unternehmensführung, 5. Aufl., Gabler: Wiesbaden.

Responsible for Module:

Henkel, Joachim; Prof. Dr. rer. pol.

Courses (Type of course, Weekly hours per semester), Instructor:

Technology and Innovation Management: Introduction (WI000114, WI000820, englisch) (Bachelor TUM-BWL) (Vorlesung, 2 SWS)

Henkel J (Göttfried A, Hanschur L)

Technology and Innovation Management: Introduction (WI000114, WI000820, englisch) (Bachelor TUM-BWL) (Vorlesung, 2 SWS)

Henkel J (Göttfried A, Hanschur L)

Marketing (WI000820, englisch) (Bachelor TUM-BWL) (Vorlesung, 2 SWS) Königstorfer J

Marketing (WI000820, englisch) (Bachelor TUM-BWL) (Vorlesung, 2 SWS) Königstorfer J

WI001088: Advanced Modeling, Optimization, and Simulation in Operations Management | Advanced Modeling, Optimization, and Simulation in Operations Management [AMOS]

Version of module description: Gültig ab summerterm 2016

Module Level: Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The offered module is composed of the sections optimization and simulation. In both sections, basic knowledge and skills for designing and evaluating service and production processes are taught. The solution of analyzed problems is gained either through the application of optimization methods or through simulation. Due to the different problem-solving approaches (and the use of different software packages), both sections are thought separately. To facilitate the learning success, the learning outcomes are examined directly at the end of each section. At the end of the optimization section, there is a written exam on modeling linear optimization problems. In addition to theoretical knowledge, the students' skills in modeling with OPL and IBM ILOG CPLEX are tested. At the end of the simulation section, there is also a written exam, in which the learning outcomes in discrete-event simulation, using the software AnyLogic are tested. Both exams evaluate the individual performance of the acquired theoretical and practical skills, requiring own calculations and argumentative answers. Exams are worth 60 points each and noncumulative. To pass the course, students need to pass both exams individually. The final grade of the module is the truncated average of the exam grades. Both exams take 60 minutes each. In the exams, no aids are allowed. In addition, students can achieve a 0.3/0.4-grade bonus (according to APSO/ FPSO midterm) in each section through the successful participation in the respective homework assignments.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Management Science, Basic course in Statistics, Basic Couse in Mathematics, Production and Logistics

Content:

The acquired skills are used in the field of operations management to understand, redesign, control and optimize the production of goods and services. The students learn quantitative methods for the analysis of decision problems in operations management, and therefore, the basis for all subsequent lectures at the Department of Operations & Supply Chain Management. The presented methods can be subdivided into two distinct study sections: optimization and simulation. Optimization section:

- Introduction to linear programming, CPLEX Studio IDE, and IBM ILOG OPL
- LP formulations, e.g. production planning problems
- Model building with OPL, e.g. generic modeling, model testing with instances, scripting for preand post-processing
- Interpreting and using the solution of a LP model
- Spreadsheet input/output with OPL

Simulation section:

- Introduction to simulation, AnyLogic
- System; event; model; steps in a simulation study
- Data collection, statistical analyse and input modeling
- Fundamental simulation concepts in AnyLogic
- Simulation of simple systems together with verification, calibration, and validation
- Statistical simulation data output analysis having regard to different scenarios

Intended Learning Outcomes:

At the end of the module, students will be able to create mixed integer linear programming formulations, and discrete event simulation models of simple problems in production and operations management.

Furthermore, students will be able to solve MILP formulations in OPL and IBM ILOG Script, and implement discrete event simulation models in AnyLogic. The students also learn, how to evaluate and compare the calculated problem solutions.

Teaching and Learning Methods:

The weekly sessions consist of a lecture with an integrated exercise class. During the lecture, the content is presented and discussed. The students are invited to improve the acquired knowledge by studying the suggested literature. In the exercise, the students apply the acquired knowledge by solving and implementing given problems. The homework assignments allow students to individually improve their skills, by answering theoretical questions and implementing problems, using the respective software. After each homework assignment, the students are free to discuss their solutions and open questions in a Q&A session.

Media:

PowerPoint, Exercise sheets, Whiteboard

Reading List:

Optimization

- Williams, H. P. (1999): Model Building in Mathematical Programming. 4th edition.

Supplementary reading materials about optimization and linear programming

- Domschke, W. and Drexl, A. (2005): Einführung in Operations Research. 6th edition, Springer.
- Domschke, W., Scholl, A. and Voss, S. (1997): Produktionsplanung. 2nd edition, Springer.
- Hillier, F. S. and Lieberman, G. J. (2004): Introduction to Operations Research. 8th edition, McGraw-Hill.
- Klein, R. and Scholl, A. (2004): Planung und Entscheidung. Vahlen.
- Winston, W. L. (2004): Operations Research. 5th edition, Thomson.

Simulation:

- Kelton, W. D., Sadowski, R. P. and Sturrock, D. T. (2010): Simulation with ARENA. 5th edition, Boston: McGraw-Hill.

Supplementary reading materials about simulation and statistics

- Banks J., Carson J. S., Nelson, B. L. and Nicol. D. M. (2009): Discrete-Event System Simulation. 5th edition, Upper-Saddle-River: Prentice Hall.
- Law, A.M. (2007): Simulation modeling and analysis. 4th edition, McGraw-Hill, New York
- Bleymüller, J., Gehlert, G., Gülicher, H. (2008): Statistik für Wirtschaftswissenschaftler. 15th edition, München: Verlag Vahlen.

Responsible for Module:

Kolisch, Rainer; Prof. Dr.

Courses (Type of course, Weekly hours per semester), Instructor:

Advanced Simulation in Operations Management (WI001088, englisch) (Limited places) (Seminar, 2 SWS)

Jost C, Pahr A

Advanced Modeling and Optimization in Operations Management (WI001088, englisch) (Limited places) (Seminar, 2 SWS)

Jost C, Pahr A

WZ3096: Scientific Computing for Biological Sciences with Matlab | Scientific Computing for Biological Sciences with Matlab

Version of module description: Gültig ab summerterm 2021

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	30	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The examination consists of writing a report (10-15 pages) about a given project assigned by the lecturer, and giving a presentation on the project (10 minutes), followed by a 5 min discussion. In writing a report about their project the students will be asked to demonstrate their ability to analyze and plot data, interpret the data in the context of the biological problem and critically discuss the shortcomings of their chosen statistical method. They will be tested on their ability to summarise major factors and the conclusion of their results in a clear and concise manner. In the presentation the students will show their ability to present their results to an audience of peers and to stand a discussion about the presented content.

The final grade is an average from the written report (50%) and the presentation (50%).

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

MA9601, MA9602

Content:

The content is the workflow within the MATLAB package from loading the data, plotting and learning to program functions in MATLAB. The students will learn about the use of variables and functions. The will learn elementary descriptive techniques like bar plots, scatter plots histograms and cumulative histograms. The students will learn to use toolboxes for statistical inference and apply these toolboxes to compare distributions and means on selected data sets and for fitting functions to data to detect correlations. On selected data sets, the students will apply MATLAB methods for fourier analysis, convolution and filtering as well as for example principal component

WZ3096: Scientific Computing for Biological Sciences with Matlab | Scientific Computing for Biological Sciences with Matlab

analysis for dimensionality reduction. They will work with noisy biological data and learn how to interpret their results in the context of the data.

Intended Learning Outcomes:

The students will be able to handle biological data sets and are able to apply data analysis methods. The students are able to create plots for both analyzing and presenting data. The students will be able to handle a mathematical software package, MATLAB, and are able to find the suitable functions for statistical inference and fitting of functions.

They will be able to decide when to use fourier analysis, convolution and filtering of data. They will also know techniques for dimensionality reduction.

Teaching and Learning Methods:

The module is offered as lectures with accompanying practice sessions. In the lectures, the contents will be presented in a talk with demonstrative examples, as well as through discussion with the students. The lectures should animate the students to carry out their own analysis of the themes presented and to independently study the relevant literature. Corresponding to each lecture, practice sessions will be offered, in which exercise sheets and solutions will be available. In this way, students can deepen their understanding of the methods and concepts taught in the lectures and independently check their progress. At the beginning of the module, the practice sessions will be offered under guidance, but during the term the sessions will become more independent, and intensify learning individually as well as in small groups.

84	_	_		_	
IVI	0	п	ı	а	ľ

Case studies

Reading List:

Responsible for Module:

Giorgiieva, Julijana; Prof. Ph.D.

Courses (Type of course, Weekly hours per semester), Instructor:

Scientific computing for Biological Sciences with Matlab (UE) (Übung, 2 SWS) Gjorgjieva J [L], Dwulet J, Getz M

Scientific computing for Biological Sciences with Matlab (VO) (Vorlesung, 2 SWS) Gjorgjieva J [L], Dwulet J, Getz M

CLA30803: Cognitive Science: Thinking, Perceiving, and Knowing | Cognitive Science: Denken, Erkennen und Wissen

Version of module description: Gültig ab winterterm 2016/17

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German	one semester	winter semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	68	22

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Das Modul wird mit einer Modulprüfung in Form eines Essays (1000-1500 Wörter, inkl. unbenotetem Referat zur Vorbereitung) abgeschlossen. Durch den Vortrag / Referat soll nachgewiesen werden, dass die Studierenden, zentrale Grundprobleme der empirischnaturalisierten Erkenntnistheorie und der Cognitive Science verstanden haben und infolge auf interdisdziplinäre Fragestellungen (Essay) anwenden können. Im Essay (Prüfungsleistung) erörtern die Studierenden eine zentrale Fragestellung der Cognitive Science und dokumentieren damit ein vertieftes Verständnis der interdisziplinären Problemstellungen.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Content:

Das Seminar vermittelt eine Übersicht der unterschiedlichen interdisziplinären Konzepte der Cognitive Science ausgehend von der Naturalisierung der klassischen Erkenntnistheorie, über die Einbeziehung neurologisch-biologischer Modelle bis hin zur Modellierung kognitiver Prozesse mittels der Informatik. Am interdisziplinären Profil von Erkenntnistheorie im Brennpunkt von Kognitionsforschung, Informatik und Robotik zeigt sich die Bedeutung grundlegender, philosophischer Fragestellungen für die Vermittlung fachwissenschaftlicher Erkenntnisse und Methoden.

Themenbereiche:

- naturalisierte Erkenntnismodelle der Neurophysiologie und Biologie
- Anwendungen: KI-Modellierungen, Robotik etc.

Intended Learning Outcomes:

Die Teilnehmer besitzen Grundkenntnisse über exemplarische Problemfelder der naturalisierten Erkenntnistheorie und verstehen Grundprobleme der Cognitive Science. Sie sind in der Lage eine zentrale Fragestellung der Cognitive Science in schriftlicher Form zu erörtern und deren Relevanz für interdisziplinäre Anwendungsfelder wie KI-Modellierung sowie Robotik und deren gesellschaftlicher Bezüge argumentativ einzuordnen und dabei fachwissenschaftliches Wissen zu integrieren.

Teaching and Learning Methods:

Essay, Vorlesung, textbasiertes Seminar, Referate, Diskussionen, Gruppenarbeit, Selbststudium insbes. Lektüre / Erarbeitung von Texten

Media:

Skripte / Reader, Thesenpapiere, Tafelbilder, Power-Point

Reading List:

Responsible for Module:

PD Dr. Jörg Wernecke

Courses (Type of course, Weekly hours per semester), Instructor:

Cognitive Science: Einführung in ein interdisziplinäres Forschungsprogramm (Seminar, 1,5 SWS) Wernecke J

CLA30202: Mind - Brain - Machine | Geist - Gehirn - Maschine

Version of module description: Gültig ab summerterm 2023

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	German/English	one semester	irregularly
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Repeat Examination:

End of Semester

(Recommended) Prerequisites:

Content:

Smarte Maschinen und lernfähige Programme bestimmen die Infrastruktur und steuern die immer komplexer werdenden Abläufe in unserer technisierten Welt. Ingenieure interessieren sich für Wahrnehmung, Denken und Bewusstsein, um Roboter mit Fähigkeiten der Selbstorganisation auszustatten. Damit werden uralte Menschheitsfragen nach Geist, Seele und Bewusstsein berührt, welche die Philosophie seit ihren Anfängen beschäftigen.

Wo stehen wir heute im Brennpunkt von Neurophilosophie, Informatik und Robotik? Wie verstehen die Kognitionswissenschaften (Cognitive Science) Intelligenz und Bewusstsein? Und welche Konsequenzen haben diese Konzepte für die Anwendung, beispielsweise bei der Analyse von Entscheidungsprozessen Human-centered Design?

Intended Learning Outcomes:

Die Studierenden verfügen nach erfolgreicher Teilnahme über

- ein breites Verständnis von Konzepten des Geistes in verschiedenen Disziplinen wie Linguistik, Psychologie, Neurowissenschaften, Philosophie, Informatik und Anthropologie
- ein detailliertes Wissen über mindestens ein Beispiel für die Anwendung von Konzepten des Geistes, z. B. in Bezug auf die kognitiven Prozesse, die dem Nutzerverhalten im Rahmen des human-centered Design zugrunde liegen

Slanitz, Alfred; Dr. phil.

- die Fähigkeit, akademis Präsentationstechniken	sches Fachwissen durch den Einsatz verschiedener zu vermitteln
Teaching and Learning	Methods:
Media:	
Reading List:	
Responsible for Modul	e:

Courses (Type of course, Weekly hours per semester), Instructor:

CLA40202: Mind - Brain - Machine | Geist - Gehirn - Maschine

Version of module description: Gültig ab winterterm 2010/11

	-		
Module Level:	Language:	Duration:	Frequency:
Credits:* 4	Total Hours:	Self-study Hours:	Contact Hours:
Number of credits may vary ac	ccording to degree program. Pl	ease see Transcript of Records	S.
Description of Examina	ation Method:		
Repeat Examination:			
(Recommended) Prered	quisites:		
Content:			

Intended Learning Outcomes:

Teaching and Learning Methods:

Media:

Reading List:

Responsible for Module:

Slanitz, Alfred; Dr. phil.

Courses (Type of course, Weekly hours per semester), Instructor:

CLA31900: Lecture Series Environment - TUM | Vortragsreihe Umwelt - TUM

Version of module description: Gültig ab winterterm 2019/20

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	67	23

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

The examination consists of a poster created in a group of 2-3 people connecting topics from at least two lectures. In order to collect material for the poster, participants have to organize themselves in discussion groups with 5-6 people.

Each discussion group will split into two groupes for the poster. At the end of the semester the poster has to be presented. Every member of the poster group has to speak one minute, The grade will consist of the poster and its presentation.

Mandatory requirements for the examination

For the 3-ECTS course a successful accomplishment of 16 academic performances is mandatory for the examination!

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Content:

The systematic integration of education for sustainable development at the university is an extremely complex challenge that can only be addressed through a plural and multi-perspective approach. Within the framework of the UNESCO World Programme of Action "Bildung für Nachhaltige Entwicklung" (BNE; =Education for Sustainable Development), the interdisciplinary lecture series Umwelt - TUM takes place at the TUM Campus Garching, which deals with changing topics in the field of environmental sustainability.

It is organized by the newly founded branch of the environmental department AStA TUM at the Garching campus to promote sustainability awareness at TUM and to offer interested students the opportunity to deal with the topic in more detail.

Intended Learning Outcomes:

After successful participation in this module, students are able to understand lectures at a high scientific level and reproduce central statements. Students are able to comprehend analyses of sustainable development and are familiar with formulating their own positions and justifying them in discussions. Furthermore, they know where they can explore the topic of sustainability in more detail on campus, whether in the form of course offerings, internships, projects or thesis.

Teaching and Learning Methods:

It consists of six lectures and an organizational meeting at the beginning. Each lecture includes two 40-minute presentations, a 15-minute break and a subsequent 45-minute discussion with the speakers, which is realized in cooperation with the Zentrum for Schlüsselkompetenzen (Center for Key Competencies) of the Faculty of Mechanical Engineering.

The lectures and presentation slides will be uploaded to the online learning platform Moodle. As homework, students will prepare a short report of the lectures and the discussion session. In

As nomework, students will prepare a short report of the rectures and the discussion session. In
addition, introductory and further literature will be addressed to enhance more detailed discussions
of the lectures.

Media:

Reading List:

Responsible for Module:

Dr. phil. Alfred Slanitz (WTG@MCTS)

Courses (Type of course, Weekly hours per semester), Instructor:

Cities of Change: Unleashing the Power of Sustainable Solutions (Ringvorlesung Umwelt) (Vorlesung mit integrierten Übungen, 1,5 SWS)

Noqueira de Carvalho M, Reim L, Slanitz A

CLA11216: Agile project management hands-on | Agile project management hands-on

Version of module description: Gültig ab winterterm 2014/15

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	English	one semester	irregularly
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	30	15	15

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Students are able to create an offer for a project and subsequently present their ideas (10-15 min). They are able to understand the basics of an offer preparation.

Repeat Examination:

(Recommended) Prerequisites:

Content:

The workshop teaches all the necessary skills for the early stages of a project. Starting with the basics of B2B sales, you will learn how to communicate the specifics of your company at the best or service the potential customer. Then you will learn how to properly create a functional specification document and convince the potential customer with a good concept and an attractive offer.

How does a company become a potential customer? Which sales skills are to be considered especially in B2B? What is important in professional communication to a company? What is important to consider in the requirements analysis? How do I define the milestones and goals of the project? How do I turn this into a concrete offer?

These and many other questions will be addressed in the two-day workshop by sales and project managers from Motius. Due to the interdisciplinary focus of Motius on projects in the fields of electrical engineering, computer science and mechanical engineering, we are able to react flexibly to unusual situations. This practical knowledge we pass on to you. Being founders as students ourselves, we are sensitive to the subtleties of communication.

Intended Learning Outcomes:

After successful participation in this module, students are able to understand the basics of technical project sales and are able to work with techniques of professional communication. Furthermore, participants have the knowledge of preparing project plans and quotations and applying basics of practical project management in the context of a proposal preparation.

Teaching and Learning Methods:

- (1) First, the theoretical basics are taught. You will learn what is required for an offer and professional acquisition. You will be able to apply the knowledge directly using examples from everyday life at Motius. At the end of the day, you will be given a real-life example to work on. Within one week you will write an offer for the project in small teams.
- (2) After the teams have presented their proposal, they will get detailed feedback. Then the basics of the project setup (project plan, distribution of tasks and roles, project management) are taught. The workshop concludes with the evaluation of the results and with the "assignment" of one or more teams.

Media:		
Reading List:		

Responsible for Module:

Slanitz, Alfred; Dr. phil.

Courses (Type of course, Weekly hours per semester), Instructor:

CLA11317: Interdisciplinary Lecture Series Environment: Politics and Society | Ringvorlesung Umwelt: Politik und Gesellschaft

Version of module description: Gültig ab summerterm 2015

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	English	one semester	summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	30	15	15

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

A successful accomplishment of 9 academic performances is mandatory for the examination! The examination consists of a short PowerPoint presentation at the end of the semester. The presentation can be created alone or in groups of two. Everyone has to speak one minute. The examination is ungraded.

Repeat Examination:

(Recommended) Prerequisites:

Content:

The lecture series Umwelt (environment) is an interdisciplinary, public lecture organised by the Environmental Department of the Studentische Vertretung (Student Representatives) of the TU Munich. Experts speak e.g. on technical environmental protection, health, consumer and climate protection. In the summer semester, it offers students the opportunity to learn about the political and social dimensions of current ecological topics and research results at a scientific level.

The lecture series Umwelt (environment) is offered in the winter semester in the module CLA11200 Ringvorlesung Umwelt: Ökologie und Technik (Lecture series on the environment: ecology and technology). It is only possible to gain given credits twice for the lecture series within each study program.

Intended Learning Outcomes:

Students are able to follow expert presentations on political and social dimensions of environmental problems and identify core theses and central facts.

Teaching and Learning Methods:
Lectures, presentations, discussions

Media:

Reading List:

Responsible for Module:

CLA11317: Interdisciplinary Lecture Series Environment: Politics and Society | Ringvorlesung Umwelt: Politik und

Courses (Type of course, Weekly hours per semester), Instructor:

Gesellschaft

Cities of Change: Unleashing the Power of Sustainable Solutions (Ringvorlesung Umwelt) (Vorlesung mit integrierten Übungen, 1,5 SWS)

Nogueira de Carvalho M, Reim L, Slanitz A

For further information in this module, please click campus.tum.de or here.

CLA20424: Intercultural Encounters | Interkulturelle Begegnungen

Version of module description: Gültig ab winterterm 2002/03

Module Level: Bachelor/Master	Language: German/English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours: 60	Self-study Hours: 38	Contact Hours: 22

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In einer Präsentation werden eigene und fremde kulturelle Standards reflektiert und diskursiv mit den anderen Teilnehmern ausgetauscht (Studienleistung). Zudem verfassen die Studierenden ein Lerntagebuch von etwa 5 Seiten, in dem sie die Gefahren von Stereotypisierung und das verbindende Potential interkultureller Begegnungen begründet wiedergeben (Prüfungsteilleistung).

Repeat Examination:

(Recommended) Prerequisites:

Gute Deutschkenntnisse (Niveau B2)

Content:

Internationale Studierende können sich umso leichter in Hochschule, Gesellschaft und Arbeitswelt integrieren, je mehr Kontakt sie zu ihren deutschen Mitstudierenden haben. Wollen deutsche Studierende im Gegenzug auf dem internationalen Arbeitsmarkt bestehen, so ist der Erwerb interkultureller Kompetenzen unerlässlich.

Die Veranstaltung gibt internationalen und deutschen Studierenden die Möglichkeit, sich ein Semester lang besser kennen zu lernen: Auftakt und Abschluss bilden je ein eintägiger Workshop. Unter Anleitung eines internationalen Trainer/-innenteams werden die Teilnehmenden für andere Kulturen sensibilisiert und reflektieren die eigenen Wertvorstellungen sowie den Umgang mit deutschen und internationalen Mitstudierenden. Im weiteren Verlauf treffen sich die Studierenden bei kulturellen, sportlichen und fachlichen Events wieder und können so ihre Kontakte vertiefen.

Intended Learning Outcomes:

Nach der Teilnahme sind die Studierenden in der Lage

- eigene und fremde kulturelle Standards zu reflektieren
- die Gefahren von Stereotypiosierung im interkulturellen Kontext zu erkennen

- kompetenter mit kulturellen Unterschieden und möglichen Konfliktsituationen umzugehen

Die Studierenden können Softskills im interkulturellen Bereich umsetzen und bei gemeinsamen Veranstaltungen mit deutschen und internationalen Studierenden praxisnah und anschaulich weiterentwickeln.

Teaching and Learning Methods:

Wir verwenden eine methodische Vielfalt aus interaktiven Aufgaben (z.B. Arbeit an Fallbeispielen, Simulationen, Gruppenarbeit) und Kurzvorträgen.

Media:	
Reading List:	
Responsible for Module:	

Courses (Type of course, Weekly hours per semester), Instructor:

Come Together! - Inter/Cultural Practice for Locals, Foreigners and World Inhabitants (Workshop, 2 SWS)

Eberhard M, Schliep H

CLA21023: Passing Exams in Relaxed Mode | Entspannt Prüfungen bestehen

Version of module description: Gültig ab winterterm 2013/14

Module Level: Bachelor/Master	Language: German	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
2	60	36	24

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Die Prüfungsleistung besteht aus einem Bericht in Form einer schriftlichen Selbstreflexion (3-4 Seiten), in welchem zu den Themen des Kurses Stellung genommen und die diesbezügliche persönliche Entwicklung nachgezeichnet wird.

Repeat Examination:

Next semester

(Recommended) Prerequisites:

Die Teilnehmenden bringen ein persönliches Anliegen zur Verbesserung ihrer Prüfungsvorbereitung und ihrer Prüfungserfolge mit.

Content:

Stellen Sie sich vor, morgen ist eine wichtige Prüfung – und Sie kommen locker durch. Obwohl Prüfungen Ihnen immer Stress und schlaflose Nächte bereiten.

Wir helfen Ihnen, die für Sie richtige Prüfungs-Strategie zu finden. Sie erfahren, wie Sie sich nach neuesten wissenschaftlichen Erkenntnissen am besten vorbereiten und wie Sie im entscheidenden Moment entspannen und Ihr Wissen präzise und umfassend wiedergeben können. Mit modernen Coaching-Techniken verwandeln wir Ihre eigenen Zweifel in eine Erfolgsstory. Dieser dreitägige Coaching-Workshop richtet sich an Studierende, die sich mehr Gelassenheit in Prüfungssituationen wünschen und ihr Studium mit gutem Erfolg abschließen wollen.

Intended Learning Outcomes:

Ziel des Moduls ist, den eigenen Umgang mit Prüfungssituationen zu reflektieren, unterschiedliche Techniken für die Vorbereitung und das Bestehen von Prüfungen zu kennen, mit belastenden

Prüfungssituationen souverän umgehen zu können und die eigene Prüfungsvorbereitung zielführend und termingerecht zu gestalten.

Teaching and Learning Methods:

Input und Vortrag, Gruppenarbeit, Selbstreflexion und Einzelarbeit

Media:

Reading List:

Baumeister/Thierney/Neubauer: Die Macht der Disziplin, 2012

Engelbrecht Sigrid: Ich müsste wollte sollte, 2011 Grüning Christian: Garantiert erfolgreich lernen, 2009 Metzig/Schuster: Prüfungsangst und Lampenfieber, 2009

Mortan/Mortan: Bestanden wird im Kopf, 2009

Hafner/Kronenberger: Entspannt Prüfungen bestehen, 2015

Responsible for Module:

Vierthaler, Barbara; Dipl.-Päd. (Univ.)

Courses (Type of course, Weekly hours per semester), Instructor:

Entspannt Prüfungen bestehen (Workshop, 2 SWS)

Hafner B, Kronenberger U (Vierthaler B)

Language Center | Sprachenzentrum

Module Description

SZ0118: Arabic A1.1 | Arabisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese-und Hörverstehen sowie zur freien Textproduktion und werden in Form von kompetenz- und handlungsorientierten Portfolioaufgaben (Hilfsmittel erlaubt) sowie einem Abschlusstest abgehalten. Die Form und Bedingungen des Abschlusstests können je nach Abhaltungsformat der jeweiligen LV variieren (Online/Präsenz; mit/ohne Hilfsmittel) und werden rechtzeitig bekannt gegeben.

Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei: In diesem Falle beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).)

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden neben der Einübung des arabischen Schrift- und Lautsystems Grundkenntnisse des Arabischen vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen - z.B. beim sich Begrüßen, beim Einkaufen, im Restaurant, und im öffentlichen Verkehr etc. - trotz geringer Sprachkenntnisse zurechtzufinden. Sie lernen/üben grundlegendes Vokabular zu Themen wie Gesundheit, Familie, Beruf, einfache Fragen zur

Person/zur Familie zu stellen und zu beantworten, Zahlen und Uhrzeiten zu verstehen und zu benutzen und in einfach strukturierten Hauptsätzen Alltägliches zu berichten. Entsprechende grammatikalische Themen werden behandelt. Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache eigenverantwortlich und effektiv zu gestalten.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A1 des GER. Der/Die Studierende erlangt Grundkenntnisse in Arabisch mit allgemeinsprachlicher Orientierung unter Berücksichtigung interkultureller und landeskundlicher Aspekte. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in multinational gemischten Gruppen.

Nach Abschluss dieses Moduls kann der/die Studierende alltägliche Ausdrücke und sehr einfache Sätze verwenden, die auf die Befriedigung konkreter Bedürfnisse des alltäglichen Bedarfs zielen: Er/Sie kann sich und andere vorstellen und Fragen zu ihrer Person stellen und auf Fragen dieser Art Antwort geben, in einfacher Weise Tagesabläufe beschreiben und einfache schriftliche Mitteilungen zur Person machen. Er/Sie ist in der Lage, Wünsche zu kommunizieren, wenn die Gesprächspartner deutlich und langsam sprechen und bereit sind zu helfen. Sowohl im schriftlichen als auch im mündlichen Sprachgebrauch ist der/die Studierende in der Lage, situationsadäquat, bzw. der A1.1-Stufe entsprechend, Wortschatz und Grammatik korrekt anzuwenden.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechübungen in Einzel-, Partner- und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch wird in der LV bekannt gegeben.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Arabisch A1.1 (Seminar, 2 SWS)

Aboelgoud E, Köpfler I

SZ0209: Chinese A1.1 | Chinesisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft.

Die Klausur beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie Aufgaben zur freien Textproduktion in Schriftzeichen/Pinyin und wird in Form von Präsenzprüfungen oder (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt.

Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. In diesem Fall beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Interesse an der chinesischen Sprache und Kultur ist empfehlenswert

Content:

Dieses Modul umfasst die Einführung in die chinesische Phonetik, elementare Vokabeln und Grammatik sowie die Einführung in die chinesischen Schriftzeichen. Mitgeteilt werden die Besonderheit der vier Töne im Hochchinesischen, der Aufbau der Schriftzeichen und die elementare Grammatikstruktur. Alltägliche Begrüßungsformen, Basisredewendungen und einfache Satzelemente sind Bestandteile dieses Moduls.

Intended Learning Outcomes:

Nach der Teilnahme an der Modulveranstaltung sind die Studierenden in der Lage, einen Überblick über die chinesische Sprache zu gewinnen. Sie haben auch den Grundwortschatz in chinesischen Schriftzeichen erworben.

Teaching and Learning Methods:

Einzelarbeit, Partnerarbeit, Gruppenarbeit. Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; Hör-, Lese- und Sprechübungen. Hausaufgaben zur Vor- und Nachbearbeitung sind freiwillig und fördern die Beherrschung der Zielsprache.

Media:

Lehrbuch, Übungsblätter, multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch wird in der LV bekanntgegeben, Vom Kursleiter selbst erstellte Materialien/Übungen

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Chinesisch A1.1 (Seminar, 2 SWS)

Fu Y, Kralle J, Lee M, Zhou H

SZ0210: Chinese A1.2 | Chinesisch A1.2

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency: winter/summer semester
Bachelor/Master	Language taught	one semester	
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft.

Die Klausur beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie Aufgaben zur freien Textproduktion in Schriftzeichen/Pinyin und wird in Form von Präsenzprüfungen oder (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt.

Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. In diesem Fall beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Bestandene Abschlussklausur A1.1 oder gleichwertige Vorkenntnisse

Content:

In diesem Modul werden die Kenntnisse über die Fragepartikeln, Eigenschaftswörter und Zahleneingaben vermittelt. Mit den Kommunikations-möglichkeiten zu den Alltagssituationen wird das Gelernte realitätsnah erprobt.

Intended Learning Outcomes:

Die Studierenden sind nach dem Abschluss des Moduls in der Lage, weitere Verben zu beherrschen, verschiedene Fragepartikeln, Eigenschaftswörter und Zahleneingaben anzuwenden. Sie können sich an leichteren Gespräche im Alltag, der A1.2-Stufe entsprechend, beteiligen.

Teaching and Learning Methods:

Einzelarbeit, Partnerarbeit, Gruppenarbeit

Hausaufgaben zur Vor- und Nachbearbeitung sind freiwillig und fördern die Beherrschung der Zielsprache.

Media:

Lehrbuch, Übungsblätter, Audio-CD, multimedial gestützte Lehr- und Lernmaterialien

Reading List:

Lehrbuch wird in der Veranstaltung bekanntgegeben, Vom Kursleiter selbst erstellte Materialien/Übungen

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Chinesisch A1.2 (Seminar, 2 SWS)

Fu Y, Lee M, Zhou H

SZ0211: Chinese A2.1 | Chinesisch A2.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft.

Die Klausur beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie Aufgaben zur freien Textproduktion in Schriftzeichen/Pinyin und wird in Form von Präsenzprüfungen oder (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt.

Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. In diesem Fall beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Bestanden Abschlussklausur A1.2 oder gleichwertige Vorkenntnisse

Content:

Der Schwerpunkt dieses Moduls liegt in der Verfeinerung der Sprachkenntnisse. Kombination von verschiedenen Satzelementen wie Orts- und Zeitangaben sowie Äußerung von persönlichen Meinungen werden in diesem Modul erarbeitet.

Intended Learning Outcomes:

Die Studierenden sind nach der Teilnahme an der Modulveranstaltung in der Lage, genauere Aussagen zu machen und komplexere Äußerungen zu zu formulieren.

Teaching and Learning Methods:

Einzelarbeit, Partnerarbeit, Gruppenarbeit

Hausaufgaben zur Vor- und Nachbearbeitung sind freiwillig und fördern die Beherrschung der Zielsprache.

Media:

Lehrbuch, Übungsblätter, Audio-CD und multimedial gestützte Lehr- und Lernmaterialien

Reading List:

wird in der Veranstaltung bekanntgegeben

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Chinesisch A2.1 (Seminar, 2 SWS)

Zhou H

SZ0218: Chinese - Business Chinese 1 | Chinesisch - Wirtschaftschinesisch 1

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	Language taught	one semester	irregularly
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Bei den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Klausur beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie Aufgaben zur freien oder gesteuerten Textproduktion /Pinyin und wird in Form von Präsenzprüfungen oder kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt.

Das Hörverstehen wird anhand von Hörbeispielen mit entsprechenden Fragen zum Inhalt überprüft, die schriftlich beantwortet werden müssen. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. In diesem Fall beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Erfolgreiche Teilnahme an der Stufe B1.2 oder vergleichbare Kenntnisse.

Die Teilnehmer sollen Interesse an dem Thema und Fachbereich Wirtschaft mitbringen.

Content:

Der Wirtschaftschinesisch-Kurs hat den Schwierigkeitsgrad B2.1 nach dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER).

In dieser LV werden Kenntnisse über schwierige Grammatikstrukturen, fachspezifische Begriffe und Themen vermittelt. Sprachkenntnisse in Mandarin-Chinesisch werden erarbeitet, die es den Studierenden ermöglichen, sich in der Arbeit, zu Themen wie Teamarbeit, Tagesplanung, Marketing, Geld und Währung selbständig und sicher in der Zielsprache zu verständigen.

Außerdem werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Chinesisch effektiver zu gestalten und damit die eigene Lernfähigkeit zu verbessern.

Intended Learning Outcomes:

Nach der Teilnahme an dieser Veranstaltung sind die Studierenden in der Lage an allgemeinen Gesprächen sicher teilzunehmen, über spezielle Themen zu diskutieren und Präsentationen zu den Themen z. B. Geschäftsberatung und Managementstrategien zu führen.

Die Studierenden sind auch in der Lage mündlich wie schriftlich über Erfahrungen und Ereignisse einfach und zusammenhängend zu berichten. Die LV ermöglicht ihnen darüber hinaus ihre Diskussionsbeiträge präziser zu formulieren.

Sie sind in der Lage ca. 250 chinesische Wörter des Wirtschaftsvokabulars für Berufskommunikation zu verstehen und anzuwenden. Sie kennen ca. 10 beliebte chinesische Marken und Webseiten und verfügen über die grundlegenden Kenntnisse wie man einige chinesische Apps verwendet.

Teaching and Learning Methods:

Einzelarbeit zum individuellen sowie Partner- und Gruppenarbeit zum kommunikativen und handlungsorientierten Erarbeiten der Inhalte; Referate können gehalten werden. Hausaufgaben zur Vor- und Nachbearbeitung sind freiwillig und fördern die Beherrschung der Zielsprache.

Media:

Lehrbuch, Übungsblätter, Online-Materialien, Zeitungsartikel, Kurzfilme

Reading List:

Lehrbuch wird in der Veranstaltung bekanntgegeben Vom Kursleiter selbst angefertigte Übungen, Auszüge aus kopierbaren Lehrmaterialien, Online-Materialien

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

SZ0425: English - Introduction to Academic Writing C1 | Englisch - Introduction to Academic Writing C1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Performance, testing the learning outcomes specified in the module description, is examined by a cumulative portfolio of competence and action-oriented tasks. This includes three writing assignments (each 30%) covering various essay genres such as process description, comparison/contrast, problem/solution, requiring argumention, persuasion and analysis, as well as a final exam (10%). Students will be graded on their ability to present content clearly and succinctly taking readers' needs and writing conventions into consideration.

As the course may be offered in various formats (online or classroom) the form and conditions of the final exam (with or without aids) will vary. Where audio or video is recorded, we observe the Basic Data Protection Regulation (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Ability to begin work at the C1 level of the GER as evidenced by the placement test at www.moodle.tum.de.

Content:

This course will help students learn to express themselves more correctly and persuasively in written English. There will be a focus on forming correct sentences and paragraphs, working towards the production of longer texts of the type students will be expected to write during their academic studies. They will also learn to evaluate and interpret the written texts of others.

After completion of this module students will be able to write academic texts with greater fluency and accuracy and with fewer grammatical errors. They will be able to engage the rules of composition to construct logical and mature descriptions, explanations, and claims of the sort they will need throughout their academic years and beyond.

Corresponds to C1 of the CER.

Teaching and Learning Methods:

This course makes use of peer group revision (students give each other feedback on their texts), working through multiple drafts, and evaluation of model texts to help students develop their academic writing skills.

Media:

Peer groups, handouts, textbook, online resources.

Reading List:

Handouts and selected extracts from published sources will be used in the course. Key literature will be advised by the teacher and/ or listed in the course description.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Englisch - Introduction to Academic Writing C1 (Seminar, 2 SWS)
Field B, Jacobs R, Lemaire E, Schenk T, Schrier T, Starck S
For further information in this module, please click campus.tum.de or here.

SZ0429: English - English for Scientific Purposes C1 | Englisch - English for Scientific Purposes C1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Performance, testing the learning outcomes specified in the module description, is examined by a cumulative portfolio of competence and action-oriented tasks consisting of multiple drafts of two assignments to allow students to develop written skills by means of a process of drafting and revising texts (25% each assignment), as well as an oral presentation (including a handout and visual aids, 25%), and a final written examination (25%).

Repeat Examination:

(Recommended) Prerequisites:

C1 level according to the online placement test

Content:

This course enables students to practise scientific and technical English through active group discussions and delivery of subject-related presentations.

Students will develop an awareness of Anglo-American public speaking conventions and will be able to put these into practice. In written and spoken contexts they will be able to differentiate accurately between situations requiring formal or familiar registers and select the correct form. Further, the will impove their ability to present content clearly and succinctly taking readers' needs and writing conventions into consideration.

Intended Learning Outcomes:

On completion of this module/course students will have expanded their knowledge of vocabulary related to science and technology. The student's reading, writing and listening skills as well as oral fluency will improve.

Corresponds to C1 of the CER.

Teaching and Learning Methods:

This course involves pair-work and group-work enabling students to develop their verbal and written skills in scientific and technical environment.

Media:

Internet sources, handouts contributed by course tutor/students, e-learning platform

Reading List:

Internet articles, Journals such as Nature and Scientific American

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Englisch - English for Scientific Purposes C1 (Seminar, 2 SWS)

Hanson C

SZ0430: English - English in Science and Technology C1 | Englisch - English in Science and Technology C1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Performance, testing the learning outcomes specified in the module description, is examined by a cumulative portfolio of competence and action-oriented tasks consisting of multiple drafts of two assignments to allow students to develop written skills by means of a process of drafting and revising texts (25% each assignment), as well as an oral presentation (including a handout and visual aids, 25%), and a final written examination (25%).

Repeat Examination:

(Recommended) Prerequisites:

C1 level according to the online placement test

Content:

This course enables students to practise scientific and technical English through active group discussions and delivery of subject-related presentations.

Students will develop an awareness of Anglo-American public speaking conventions and will be able to put these into practice. In written and spoken contexts they will be able to differentiate accurately between situations requiring formal or familiar registers and select the correct form. Further, the will impove their ability to present content clearly and succinctly taking readers' needs and writing conventions into consideration.

Intended Learning Outcomes:

On completion of this module/course students will have expanded their knowledge of vocabulary related to science and technology. The student's reading, writing and listening skills as well as oral fluency will improve.

Corresponds to C1 of the CER.

Teaching and Learning Methods:

This course involves pair-work and group-work enabling students to develop their verbal and written skills in scientific and technical environment.

Media:

Internet sources, handouts contributed by course tutor/students, e-learning platform

Reading List:

Internet articles, Journals such as Nature and Scientific American

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Englisch - English in Science and Technology C1 (Seminar, 2 SWS)

Bhar A

SZ0488: English - Gateway to English Master's C1 | Englisch - Gateway to English Master's C1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
3	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Performance, testing the learning outcomes specified in the module description, is examined by a cumulative portfolio of competence and action-oriented tasks. These include multiple drafts of an argumentative research paper (alternatively: two assignments) to allow students to develop written skills by means of a process of drafting and revising texts (50% total), an oral presentation (including a handout and visual aids 25%), and a final written examination (25%). No aids may be used during the examination.

Where audio or video is recorded, we observe the Basic Data Protection Regulation (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

C1 level according to the online placement test

Content:

This course includes note-taking, discussions, academic writing and presenting a topic on a related field of study focusing on skills such as avoiding plagiarism, ethics, hedging language, and formulating research questions.

Intended Learning Outcomes:

Upon finishing this course you will be able to follow lectures in English with little difficulty and summarize the main ideas. You will be sufficiently comfortable with English as to be able to write longer papers and critical essays in English, making use of general argumentation and rhetorical conventions.

Corresponds to C1 of the CER.

Teaching and Learning Methods:

This course involves practising study situations (participating in seminars, tutorials, note-taking in lectures), pair-work & group-work in an English-speaking academic environment.

Media:

Internet, handouts, online material

Reading List:

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Englisch - English for Academic Purposes: Gateway to English Master's C1 (Seminar, 2 SWS) Bhar A, Clark R, Ritter J, Schrier T, Stapel M, Starck S

Englisch - English for Civil Engineering: Gateway to English Master's C1 (Seminar, 2 SWS) Clark R

Englisch - English for Environmental Engineering: Gateway to English Master's C1 (Seminar, 2 SWS)

Clark R

SZ0501: French A1.1 | Französisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Französisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz noch geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt.

Die Studierenden lernen und üben einfache Fragen zur Person zu stellen und zu beantworten, sich in einer Stadt zu orientieren, Interessen auszudrücken und Formulare auszufüllen. Es werden u.a. folgende grammatische Themen behandelt, wie z.B. Präsensformen regelmäßiger und einiger unregelmäßiger Verben, Personalpronomen, bestimmte, unbestimmte und Teilungs-Artikel, Fragesätze, Angleichung der Adjektive. Es werden Strategien vermittelt, die eine Verständigung trotz noch geringer Sprachkenntnisse in alltäglichen Grundsituationen ermöglichen. Außerdem werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Französisch effektiver zu gestalten und die eigene Lernfähigkeit zu verbessern.

Das Modul orientiert sich am Niveau "A1 – Elementare Sprachverwendung" des GER. Der/die Studierende ist nach der Teilnahme an der Modulveranstaltung in der Lage, einfache Fragen über vertraute Themen zu stellen und zu beantworten. Er/sie kann sich auf einfache Art verständigen, wenn die Gesprächspartnerinnen oder Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Er/sie kann einfache schriftliche Mitteilungen zur Person machen. Sowohl im mündlichen als auch im schriftlichen Sprachgebrauch ist der/die Studierende in der Lage, situationsadäquat, bzw. der A 1-Stufe entsprechend, Wortschatz und Grammatik korrekt anzuwenden.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezieltem Hör-, Lese-, Schreib- und Sprechübungen erarbeitet werden. Durch die Kombination dieser Übungen in Einzel-, Partner und Gruppenarbeit wird der kommunikative und handlungsorientierte Ansatz umgesetzt. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Französisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (Tafel, Folie, Übungsblätter, Bild, Film, etc.), auch online.

Reading List:

Lehrbuch (wird im Kurs bekanntgegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Französisch A1.1 (Seminar, 2 SWS)

Bartanus J, Bruel J, Cuneo M, Delavigne C, Gommeringer-Depraetere S, Kirchhoff A, Neumaier-Giacinti E, Paul E

Blockkurs Französisch A1.1 (Seminar, 2 SWS)

Cuneo M, Kirchhoff A

SZ0502: French A1.2 | Französisch A1.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

- gesicherte Kenntnisse der Stufe A1.1
- Einstufungstest mit Ergebnis A1.2

Content:

In diesem Modul werden die Grundkenntnisse in französischer Lexik und Grammatik für einfache, mündliche und schriftliche Kommunikationssituationen im Alltag erweitert. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Der/Die Studierende lernt z.B., einfache Fragen zu Person und Familie zu stellen und zu beantworten, Verabredungen zu treffen, Reservierungen von Hotel zu tätigen, über Freizeit und Ferien zu berichten, vergangene Erlebnisse zu erzählen. Es werden u.a. folgende grammatische Themen behandelt: Passé Composé, Futur proche, Mengenangaben, Possessivbegleiter, direkte und indirekte Objektpronomen.

Es werden Strategien vermittelt, die eine Verständigung trotz noch geringer Sprachkenntnisse in alltäglichen Grundsituationen ermöglichen. Außerdem werden Möglichkeiten aufgezeigt,

den Lernprozess in der Fremdsprache effektiver zu gestalten und die eigene Lernfähigkeit zu verbessern.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau "A1 – Elementare Sprachverwendung" des GER. Der/ Die Studierende ist nach Abschluss dieses Moduls in der Lage, alltägliche Ausdrücke und sehr einfache Sätze zu verstehen und zu verwenden. Er/sie kann sich auf einfache Art verständigen, wenn die Gesprächspartnerinnen oder Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Er/sie kann einfache schriftliche Mitteilungen zur Person machen. Sowohl im mündlichen als auch im schriftlichen Sprachgebrauch ist der/die Studierende in der Lage, situationsadäquat, bzw. der A 1-Stufe entsprechend, Wortschatz und Grammatik korrekt anzuwenden.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezieltem Hör-, Lese-, Schreib- und Sprechübungen erarbeitet werden. Durch die Kombination dieser Übungen in Einzel-, Partner und Gruppenarbeit wird der kommunikative und handlungsorientierte Ansatz umgesetzt. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Französisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (Tafel, Folie, Übungsblätter, Bild, Film, etc.), auch online.

Reading List:

Lehrbuch (wird im Unterricht bekanntgegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Französisch A1.2 (Seminar, 2 SWS)

Bartanus J, Bruel J, Neumaier-Giacinti E, Suek C

Blockkurs Französisch A1.2 (Seminar, 2 SWS)

Suek C

SZ0504: French A2.2 | Französisch A2.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

- gesicherte Kenntnisse der Stufe A2.1
- Einstufungstest mit Ergebnis A2.2

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Französisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Das Hör- und Leseverstehen sowie das Sprechen werden anhand verschiedener Hörübungen und Texten aus verschiedenen Bereichen des Alltagslebens und der Arbeitswelt trainiert. Die Wiederholung und Vertiefung der Grammatik orientiert sich an den kommunikativen Lernzielen. Es werden u.a. folgende grammatische Themen behandelt: Zukunft, Gerundium, indirekte Rede, Vergangenheitszeiten, Angleichung des Partizips, Subjonctif. Es werden Strategien vermittelt, die mündlich wie schriftlich eine Verständigung trotz noch geringer Sprachkenntnisse ermöglichen. Außerdem werden Möglichkeiten aufgezeigt, den Lernprozess effektiver zu gestalten und damit die eigene Lernfähigkeit zu verbessern.

Das Modul orientiert sich am Niveau "A2 – Elementare Sprachverwendung" des GER. Nach Abschluss dieses Moduls kann der/die Studierende im Gespräch einfache Sätze und Redewendungen zu einem erweiterten Spektrum an vertrauten Themen verstehen und gebrauchen. Dabei handelt es sich um grundlegende Informationen zu alltäglichen, oder studienbzw. berufsrelevanten Themen unter Einbeziehung landeskundlicher Aspekte.

Der/die Studierende kann Texte und Briefe zu vertrauten Themen verstehen, in denen gängige aber einfache alltags- oder berufsbezogene Sprache verwendet wird und in denen vorhersehbare Informationen zu finden sind. Er/Sie ist in der Lage kurze, informative Texte oder Mitteilungen zu grundlegenden Situationen in Alltag und Studium zu verfassen.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezieltem Hör-, Lese-, Schreib- und Sprechübungen erarbeitet werden. Durch die Kombination dieser Übungen in Einzel-, Partner und Gruppenarbeit wird der kommunikative und handlungsorientierte Ansatz umgesetzt. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Französisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch, multimedial gestütztes Lehr- und Lernmaterial (Tafel, Folie, Übungsblätter, Bild, Film, etc.), auch online.

Reading List:

Lehrbuch (wird im Kurs bekanntgegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Französisch A2.2 (Seminar, 2 SWS)

Delavigne C, Kirchhoff A, Paul E, Perconte-Duplain S

SZ0512: French B1/B2 - Conversation Course: French Society | Französisch B1/B2 - Cours de conversation: La société française

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
3	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Kumulative Tests: 80% Präsentation: 20%

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21). Zu der Prüfungsleistung gehört auch eine kurze Präsentation auf Französisch zu einem kulturbezogenen, gesellschaftlichen oder wissenschaftlichen Thema im Zusammenhang mit Frankreich. Diese Präsentation ist eigenverantwortlich mündlich wie schriftlich zu gestalten bzw. vorzutragen. Anschließend sollen auch Fragen zur eigenen Präsentation beantwortet werden können.

Repeat Examination:

(Recommended) Prerequisites:

- gesicherte Kenntnisse der Stufe B1
- Einstufungstest mit Ergebnis B1

Content:

In diesem Modul werden Kenntnisse in der Fremdsprache Französisch erarbeitet, die es den Studierenden ermöglichen, (sich) in verschiedenen Situationen, z.B. in Studium, Arbeit und Freizeit, und zu Themen von allgemeinem Interesse selbständig und sicher in der Zielsprache zu operieren/bewegen/verständigen. Dabei werden interkulturelle, landeskundliche und

studienbezogene Aspekte berücksichtigt. Je nach Bedarf werden Schwerpunkte der französischen Grammatik wiederholt und vertieft.

Presseartikel, Nachrichten aus dem Internet, etc. bieten einen Querschnitt durch die gegenwärtige französische Gesellschaft an und bilden somit die Grundlage für die mündliche Kommunikation. Die aktive Mitarbeit der Studierenden z. B. mittels Kurzvorträgen, Diskussionen wird erwartet und gefördert. Ziel dieses Moduls ist außerdem die Studierenden auf einen Studienaufenthalt im frankophonen Sprachraum (Kanada, ERASMUS, etc.) vorzubereiten.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau "B1 - B2" des GER. Nach der Teilnahme an der Modulveranstaltung können die Studierenden, je nach Wissenstand, über verschiedene Themen detaillierte, zusammenhängende Texte berichten, Informationen zusammenfassen, ihre Erfahrungen und Eindrücke wiedergeben, ihren Standpunkt vertreten. Sie können Inhalte von Lektüren, Gesprächen oder Sendungen wiedergeben und ihre Meinung vertreten. Nach Abschluss des Moduls sind sie in der Lage, zu vielen Themen aus ihren Interessen- oder Fachgebieten klar und strukturiert in mündlicher und schriftlicher Form zu kommunizieren.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezieltem Hör-, Lese-, Schreib- und Sprechübungen erarbeitet werden. Durch die Kombination dieser Übungen in Einzel-, Partner und Gruppenarbeit wird der kommunikative und handlungsorientierte Ansatz umgesetzt. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Französisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (Tafel, Folie, Übungsblätter, Bild, Film, etc.), auch online.

Reading List:

wird in der Lehrveranstaltung bekannt gegeben.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

SZ0602: Italian A1.1 | Italienisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).)

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Italienisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt.

Die Studierenden werden in die italienische Phonetik eingeführt; sie lernen und üben den Grundwortschatz; sie lernen und üben einfache Fragen zur Person zu stellen und zu beantworten, Interessen auszudrücken, Wünsche zu nennen, über die eigenen Gewohnheiten kurz zu berichten und Formulare auszufüllen. Es werden dabei grammatische Themen wie z.B. Präsensformen regelmäßiger und einiger unregelmäßiger Verben, Personalpronomen, bestimmte, unbestimmte Artikel, Fragesätze, Angleichung der Adjektive behandelt.

Außerdem werden Möglichkeiten aufgezeigt, wie man den Lernprozess in der Fremdsprache Italienisch eigenverantwortlich und effektiv gestalten kann.

Das Modul orientiert sich am Niveau A1 – Elementare Sprachverwendung des Gemeinsamen Europäischen Referenzrahmens für Sprachen.

Nach Abschluss des Moduls sind die Studierenden in der Lage, sich auf sehr einfache Art in der Fremdsprache Italienisch zu verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Sie können einfache Ausdrücke und Sätze verwenden, die auf die Befriedigung konkreter Bedürfnisse des alltäglichen Bedarfs zielen wie z. B. sich und andere vorstellen, Auskünfte über sich selbst geben und Auskünfte über die anderen erfragen, Wünsche äußern, über Tagesablauf und Vorlieben sprechen bzw. schreiben.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; Förderung kooperativen Lernens; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien. Freiwillige Hausaufgaben zur Vor- und Nachbereitung festigen das Gelernte.

Media:

Lehrwerk; multimedial gestütztes Lehr- und Lernmaterial.

Reading List:

Lehrwerk (wird im Unterricht bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Italienisch A1.1 (Seminar, 2 SWS)

Alfieri L, Aquaro M, Bonomini F, Mainardi D, Taddia E, Togni M, Villadei M, Zangrilli D

Blockkurs Italienisch A1.1 (Seminar, 2 SWS)

Schmidt C

SZ0605: Italian A1.2 | Italienisch A1.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Gesicherte Kenntnisse des Moduls A1.1 (bestandene Klausur) oder Einstufungstest mit Ergebnis A1.2

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Italienisch unter Berücksichtigung landeskundlicher und interkultureller Aspekte weitervermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden.

Der/Die Studierende lernt bzw. erweitert grundlegendes Vokabular zu vertrauten Themen wie Alltag und Freizeit, Studium und Studentenleben, Stadt und öffentlicher Verkehr. Er/sie lernt u.a. über sich selbst und über die eigenen Gewohnheiten im Alltag zu berichten; auf der Straße um Auskunft zu bitten und darauf zu reagieren; einen Weg zu beschreiben; Verabredungen zu treffen; von vergangenen Erlebnissen und Erfahrungen zu erzählen. Es werden u.a. folgende grammatische Themen behandelt: Direkte und undirekte Objektpronomen, Präpositionen mit und ohne Artikel, Passato prossimo. Die italienische Phonetik wird weitergelernt und geübt.

Außerdem werden Möglichkeiten aufgezeigt, wie man den Lernprozess in der Fremdsprache eigenverantwortlich und effektiv gestalten kann.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A1 – Elementare Sprachverwendung - des Gemeinsamen Europäischen Referenzrahmens für Sprachen.

Nach Abschluss des Moduls ist der/die Studierende in der Lage, sich auf sehr einfache Art in der Fremdsprache Italienisch zu verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Er/sie kann den Grundwortschatz zu Themen wie Alltag und Freizeit, Universität, Stadt und öffentlicher Verkehr verstehen und in sehr einfach strukturierten Sätzen verwenden. Außerdem kann er/sie über sich selbst, die eigenen Gewohnheiten und Vorlieben kurz berichten; auf der Straße um Auskunft bitten und darauf reagieren; Verabredungen treffen; von Erfahrungen in der Vergangenheit in sehr elementarer Form erzählen.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; Förderung kooperativen Lernens; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien. Freiwillige Hausaufgaben zur Vor- und Nachbereitung festigen das Gelernte.

Media:

Lehrwerk; multimedial gestütztes Lehr- und Lernmaterial.

Reading List:

Lehrwerk (wird im Unterricht bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Italienisch A1.2 (Seminar, 2 SWS) Alfieri L, Bonomini F, Mainardi D, Togni M, Villadei M

Blockkurs Italienisch A1.2 (Seminar, 2 SWS)

Taddia E

SZ0705: Japanese A1.1 | Japanisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Aufgaben zur Anwendung von Schriftzeichen, Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Den Teilnehmern wird empfohlen, sich vor Kursbeginn mit der Hiragana-Silbenschrift vertraut zu machen. Hierfür werden Unterlagen im jeweiligen Moodle-Kurs bereitgestellt.

Content:

In dieser LV werden neben der Einübung des japanischen Schrift- und Lautsystems (v.a. Hiragana) Grundkenntnisse des Japanischen vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Um dieses Ziel zu erreichen, wird Kommunikation im Kontext folgender Situationen eingeübt: sich vorstellen; einkaufen gehen; Öffnungszeiten/Telefonnummer erfragen etc. Dazu werden u.a. folgende Themen der Grammatik behandelt: Nominalaussage und Partikeln, Demonstrativpronomen, Zahlen und Zeitangaben. Die Studierenden lernen, mit dem grundlegenden Vokabular zu Themen wie Familie, Beruf, Freizeit und Wohnen einfach strukturierte Hauptsätze zu formulieren und Alltägliches zu berichten/ erfragen.

Nach Abschluss dieses Moduls sind die Studierenden in der Lage, vertraute, alltägliche Ausdrücke und sehr einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter, in der Bewältigung des Alltags wesentlicher Bedürfnisse zielen. Der/die Studierende kann sich und andere vorstellen und anderen Leuten Fragen zu ihrer Person stellen, bzw. Fragen dieser Art beantworten. Er/Sie kann die japanischen Silbenschriften Hiragana selbstständig lesen, schreiben und aussprechen.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; Förderung kooperativen Lernens. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben)
Vom Kursleiter selbst angefertigte/zusammengestellte Arbeitsblätter und (online-)Materialien.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Japanisch A1.1 (Seminar, 2 SWS)
Bauer K, Gottschalk H, Miyayama-Sinz M, Murakami N, Stinner-Hasegawa Y

Blockkurs Japanisch A1.1 (Seminar, 2 SWS)
Gottschalk H, Murakami N
For further information in this module, please click campus.tum.de or here.

SZ07052: Japanese A1.1 + A1.2 | Japanisch A1.1 + A1.2

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency: winter/summer semester
Bachelor/Master	Language taught	one semester	
Credits:*	Total Hours: 180	Self-study Hours: 120	Contact Hours: 60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Aufgaben zur Anwendung von Schriftzeichen, Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Den Teilnehmern wird empfohlen, sich vor Kursbeginn mit der Hiragana-Silbenschrift vertraut zu machen. Hierfür werden Unterlagen im jeweiligen Moodle-Kurs bereitgestellt.

Content:

In dieser LV werden neben der Einübung des japanischen Schrift- und Lautsystems (Hiragana, Katakana und elementare Kanji) Grundkenntnisse des Japanischen vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Um dieses Ziel zu erreichen, wird Kommunikation im Kontext folgender Situationen eingeübt: sich vorstellen; einkaufen gehen; Einladungen aussprechen und annehmen/ablehnen etc. Dazu werden u.a. folgende Themen der Grammatik behandelt: Verben und Partikeln, Zahlen und Zeitangaben, zwei Arten von Adjektiven (i-Adjektiv u. na-adjektiv) und Existenzverben. Die Studierenden lernen, mit dem grundlegenden Vokabular zu Themen wie Familie, Beruf, Freizeit und Wohnen einfach strukturierte Hauptsätze zu formulieren und Alltägliches zu berichten/erfragen.

Nach Abschluss dieses Moduls sind die Studierenden in der Lage, vertraute, alltägliche Ausdrücke und sehr einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter, in der Bewältigung des Alltags wesentlicher Bedürfnisse zielen. Der/die Studierende kann sich und andere vorstellen und anderen Leuten Fragen zu ihrer Person stellen, bzw. Fragen dieser Art beantworten. Außerdem kann er/sie neben den japanischen Silbenschriften Hiragana und Katakana ca. 20 für den Alltag relevante Kanji (chinesische Schriftzeichen) verstehen und verwenden.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; Förderung kooperativen Lernens. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben)
Vom Kursleiter selbst angefertigte/zusammengestellte Arbeitsblätter und (online-)Materialien.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Japanisch A1.1 + A1.2 (Seminar, 4 SWS)

Ishikawa-Vetter M, Murakami N

SZ0706: Japanese A1.2 | Japanisch A1.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Aufgaben zur Anwendung von Schriftzeichen, Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten (Portfolio-)Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Erfolgreiche Teilnahme an der Stufe A 1.1 oder vergleichbare Kenntnisse

Content:

In dieser LV werden Grundkenntnisse des Japanischen vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Das Erlernen der Schriftzeichen (Kanji) ist ebenfalls grundlegend. Um dieses Ziel zu erreichen, wird Kommunikation im Kontext folgender Situationen eingeübt: Verabredungen treffen; jemanden besuchen; nach dem Weg fragen etc. Dazu werden u.a. folgende Themen der Grammatik behandelt: transitive Verben und Partikeln, zwei Arten von Adjektiven (i-Adjektiv u. na-adjektiv) und Existenzverben. Die Studierenden lernen, mit dem grundlegenden Vokabular zu Themen wie Familie, Beruf, Freizeit und Wohnen einfach strukturierte Hauptsätze zu formulieren und Alltägliches zu berichten/erfragen.

Nach Abschluss dieses Moduls sind die Studierenden in der Lage, vertraute, alltägliche Ausdrücke und ganz einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter, in der Bewältigung des Alltags wesentlicher Bedürfnisse zielen. Der/die Studierende kann sich und andere vorstellen und anderen Leuten Fragen zu ihrer Person stellen, bzw. Fragen dieser Art beantworten. Er/Sie kann ein sehr kurzes Kontaktgespräch führen (begrüßen, danken, entschuldigen, Einladungen aussprechen). Außerdem kann er/sie neben den japanischen Silbenschriften Hiragana und Katakana ca. 20 für den Alltag relevante Kanji (chinesische Schriftzeichen) verstehen und verwenden.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; Gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; Förderung kooperativen Lernens. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben)
Vom Kursleiter selbst angefertigte/zusammengestellte Arbeitsblätter, (online-) Materialien.

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Japanisch A1.2 (Seminar, 2 SWS) Gottschalk H, Miyayama-Sinz M

Blockkurs Japanisch A1.2 (Seminar, 2 SWS) Stinner-Hasegawa Y For further information in this module, please click campus.tum.de or here.

SZ1808: Korean A1.1 | Koreanisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht.

Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Koreanisch vermittelt. Hangul & Vorbereitung 1 bis 4: Alphabet, Vokale + Konsonanten, Silbenstruktur + Ausspracheregeln, Wort- und Satzstruktur, Begrüßung + Vorstellung, Zahlen (1-100) nach rein koreanischem System, Zahleneinheiten, Berufsbezeichnungen, Ländernamen, Demonstrativund Possessivpronomina, Orte + Einrichtungen, Ortsangaben, Konjugationsformen (regelmäßige Verben).

Das Modul orientiert sich am Niveau A1.1 des GER. Nach Abschluss sind die Studierenden in der Lage vertraute, alltägliche Ausdrücke und ganz einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter Bedürfnisse zielen. Er/Sie kann sich und andere vorstellen und entsprechend Fragen formulieren. Er/Sie kann sich auf einfache Art verständigen, wenn die Gesprächspartnerinnen oder Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-Partner- und Gruppenarbeit; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien; Referieren und Präsentieren nach vorgegebenen Kriterien; moderierte (Rollen-) Diskussionen. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (wird in der LV bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Koreanisch A1.1 (Seminar, 2 SWS) Jeong H, Kim Y

SZ1701: Norwegian A1 | Norwegisch A1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Studien-/Prüfungsleistungen:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht.

Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Norwegisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden. Wir lernen / üben grundlegendes Vokabular zu Themen wie Familie, Wohnen, Beruf, Freizeit, Landeskunde und in einfach strukturierten Haupt- und Nebensätzen Alltägliches im Präsens zu berichten; Plural der Nomen; Personal-, Reflexiv-, Demonstrativ- und einige Possessivpronomen; einfache Negationsformen; den Gebrauch einiger Modalverben und Präpositionen; Adjektivdeklination.

Das Modul orientiert sich am Niveau A1 des GER. Der/die Studierende erlangt Grundkenntnisse in der Fremdsprache Norwegisch mit allgemeinsprachlicher Orientierung unter Berücksichtigung kultureller und landeskundlicher Aspekte. Nach Abschluss dieses Moduls kann er/sie alltägliche Ausdrücke und sehr einfache Sätze verstehen und verwenden, die auf die Befriedigung konkreter, in der Bewältigung des Alltags wesentlicher Bedürfnisse zielen. Der/die Studierende kann sich auf einfache Art verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen.

Er/Sie kann beispielsweise einfache Fragen zu Person und Familie stellen und beantworten sowie Verabredungen treffen.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-Partner- und Gruppenarbeit; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien; Referieren und Präsentieren nach vorgegebenen Kriterien; moderierte (Rollen-) Diskussionen.

Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (wird in der LV bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Norwegisch A1 (Seminar, 2 SWS)

Janes J

SZ1702: Norwegian A2 | Norwegisch A2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Studien-/Prüfungsleistungen:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht.

Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Bestandene Abschlussklausur A1

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Norwegisch vermittelt, die es den Studierenden – trotz geringer Sprachkenntnisse – ermöglichen sollen, sich in alltäglichen Grundsituationen zurechtzufinden.

Wir lernen/üben grundlegendes Vokabular und Konversationen und produzieren auch kürzere Texte (z.B. E-Mail, Textzusammenfassung und Kurzpräsentationen); vertiefen und erweitern die Grammatik aus der A1-Stufe und lesen Texte in leicht leserlicher Form.

Grammatische Inhalte: Wiederholung der Pronomen; Komplettierung der Possessivpronomen; komplexer strukturierte Haupt- und Nebensätze mit Modalverben; Imperativ; Präteritum; Perfekt und Plusquamperfekt; Zeitausdrücke-/angaben; Zeit-, Ort- und Richtungsadverbien; Steigerung des Adjektivs.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A2 des GER. Der/Die Studierende erlangt Grundkenntnisse in Norwegisch mit allgemein sprachlicher Orientierung unter Berücksichtigung kultureller und landeskundlicher Aspekte.

Nach Abschluss dieses Moduls kann der/die Studierende im Gespräch einfache Sätze und Redewendungen zu einem erweiterten Spektrum an vertrauten Themen verstehen und gebrauchen. Dabei handelt es sich um grundlegende Informationen zu alltäglichen Themen unter Einbeziehung landeskundlicher Aspekte. Der/die Studierende ist in der Lage kurze informative Texte oder Mitteilungen zu grundlegenden Situationen zu verfassen und kann längere Texte zu vertrauten Themen verstehen, in denen gängige bzw. einfache alltagsbezogene Sprache verwendet wird und in denen vorhersehbare Informationen zu finden sind.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-Partner- und Gruppenarbeit; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien; Referieren und Präsentieren nach vorgegebenen Kriterien; moderierte (Rollen-) Diskussionen.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (wird in der LV bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Norwegisch A2 (Seminar, 2 SWS)

Janes J

SZ0815: Portuguese - Portuguese for Spanish speakers A1 + A2 | Portugiesisch - Português para hispanofalantes A1 + A2

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	Language taught	one semester	irregularly
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht. Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Muttersprachliche Kenntnisse im Spanischen oder Spanisch als Fremdsprache auf Niveau B2.

Content:

In diesem Modul werden Grundkenntnisse in Fremdsprache Portugiesisch unter Berücksichtigung plurikultureller, plurilingualer und landeskundlicher Aspekte, die es den Studierenden ermöglichen, mit Unterstützung ihres Repertoires in anderen romanischen Sprachen, hier insbesondere Spanisch, sich in einfachen, routinemäßigen Situationen zurechtzufinden, z. B. Studium und Ausbildung, Beruf, Wohnen, Medien und Reisen, vorausgesetzt die Gesprächspartner äußern sich deutlich in den verschiedenen Varianten der portugiesischen Sprache.

Die Studierenden lernen/üben von einfachen zu komplexeren Strukturen u.a. Fragen zur Person/ zur Familie zu stellen und zu beantworten; Zahlen, Preise und Uhrzeiten zu verstehen und zu benutzen; Angabe zu einem Ort und zu Personen zu machen; Vergleiche anzustellen, über Erfahrungen zu sprechen und sie zu bewerten, über Alltagsaktivitäten zu berichten und diese zu planen; über die Ursachen und Folgen von etwas sprechen; Anweisungen zu geben; Situationen und Ereignisse in der Vergangenheit zu schildern und erzählen; einfache Diskussionen zu führen; Meinungen zu äußern und zu begründen. Dazu werden entsprechende, hierfür notwendige grammatische Themen bzw. Wortschatz behandelt.

Es werden Strategien vermittelt, die mündlich wie schriftlich eine Verständigung trotz noch geringer Sprachkenntnisse ermöglichen. Außerdem werden Möglichkeiten aufgezeigt, den Lernprozess eigenverantwortlich effektiver zu gestalten und damit die eigene Lernfähigkeit zu verbessern. Die Studierenden üben soziale und interkulturelle kommunikative Kompetenz durch kooperatives Handeln und Mediation (auch online).

Im Unterricht wird zugleich auf die grammatikalischen und phonetischen Unterschiede zwischen Sprachvarietäten des Portugiesisch als auch im Vergleich zum Spanischen eingegangen.

Intended Learning Outcomes:

Das Modul orientiert sich an den Niveaustufen A1 und A2 des GER.

Nach Abschluss dieses Moduls sind die Studierenden in der Lage im Gespräch einfache Sätze und Redewendungen zu einem erweiterten Spektrum an vertrauten Themen zu verstehen und zu gebrauchen. Dabei handelt es sich um grundlegende Informationen zu alltäglichen, oder studien- bzw. berufsrelevanten Themen unter Einbeziehung landeskundlicher Aspekte. Sie sind in der Lage, ihre spanischen Vorkenntnisse beim Erlernen der portugiesischen Sprache nützlich einzubringen.

Sie können beispielsweise sich und andere Personen, die persönliche Wohnsituation, Gesundheitszustand, Freizeitverhalten und berufliche Situation im Präsens oder Perfekt beschreiben. Sie können Vorschläge machen und reagieren, Informationen austauschen und Ratschläge geben.

Sie sind in der Lage, mit Hilfe feststehender Wendungen kurze, informative Texte oder Mitteilungen zu verfassen. Es werden Haupt- und Nebensätze verwendet, die durch eine Reihe von Bindewörtern kontextadäquat verbunden werden.

Die Studierenden können in Gesprächen eine unterstützende Rolle übernehmen, sofern andere Teilnehmer/innen an Gesprächen langsam sprechen und einer oder mehrere von ihnen einem dabei helfen, etwas beizutragen und Vorschläge zu machen. Sie können wichtige Informationen aus klar strukturierten, kurzen, einfachen Informationstexten übermitteln, sofern die Texte konkrete, vertraute Themen betreffen und in einfacher Alltagssprache verfasst sind.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechübungen erarbeitet werden. Durch die Kombination dieser Übungen in Einzel-, Partner- und Gruppenarbeit wird der kommunikative und handlungsorientierte Ansatz umgesetzt. Dadurch wird die Interaktion und Mediation mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln, unter Berücksichtigung der sozialen und interkulturellen Kompetenz. Lernautonomie und Medienkompetenz werden angestrebt.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der LV bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

SZ0901: Russian A1.1 | Russisch A1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Version 1: In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Version 2: Schriftliche Abschlussklausur (keine Hilfsmittel erlaubt). Prüfungsdauer: 90 Minuten. In der schriftlichen Prüfung werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Leseverstehen sowie Aufgaben zur freien Textproduktion. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft.

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden elementare Kenntnisse der Fremdsprache Russisch vermittelt. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Die Studierenden lernen grundlegendes Vokabular zu den Einstiegsthemen in einfachen sprachlichen Strukturen zu formulieren und über sie im Präsens zu berichten. Die Studierenden üben zum Beispiel einfache Fragen zur Person, Familie und Herkunft zu stellen und zu beantworten sowie über Befinden, Wohnort und Sprachkenntnisse zu diskutieren. Es werden kommunikative Situationen geübt, die auf einen Aufenthalt im Zielland vorbereiten. Dazu werden die notwendigen grammatikalischen

Themen behandelt. Die Studierenden erlernen die russische Schrift und können sie in der Praxis anwenden. Es werden Lernstrategien vermittelt, die einen erfolgreichen Einstieg in die russische Sprache ermöglichen.

Intended Learning Outcomes:

Dieses Modul orientiert sich am Niveau A1 des Gemeinsamen Europäischen Referenzrahmens (GER). Nach Bestehen des Moduls sind die Studierenden in der Lage vertraute, alltägliche Ausdrücke und ganz einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter Bedürfnisse zielen. Man kann sich und andere vorstellen und den Gesprächspartnern Fragen zu ihrer Person stellen sowie auch selbst auf Fragen dieser Art Antwort geben. Die Studierenden können sich auf einfache Art verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreib- und Sprechübungen; Einzel-, Partner- und Gruppenarbeit; kontrolliertes Selbstlernen mit vorgegebenen Materialien; Vorbereitung einer kurzen Präsentation in der Zielsprache; selbständige Recherchen zu den vorgegebenen Themen. Freiwillige Hausaufgaben festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der LV bekannt gegeben)
Vom Kursleiter selbst angefertigte / zusammengestellte Übungen; Auszüge aus kopierbaren
Lehrmaterialien; Online-Materialien

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Russisch A1.1 (Seminar, 2 SWS) Gauß K, Legkikh V

Blockkurs Russisch A1.1 (Seminar, 2 SWS)

Legkikh V

SZ0902: Russian A1.2 | Russisch A1.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Version 1: In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Version 2: Schriftliche Abschlussklausur (keine Hilfsmittel erlaubt). Prüfungsdauer: 90 Minuten. In der schriftlichen Prüfung werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Leseverstehen sowie Aufgaben zur freien Textproduktion. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft.

Repeat Examination:

(Recommended) Prerequisites:

Erfolgreiche Teilnahme an der Stufe A1.1 oder vergleichbare Sprachkenntnisse.

Content:

In diesem Modul werden Grundkenntnisse der Fremdsprache Russisch vermittelt. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Die Studierenden lernen grundlegendes Vokabular zu verschiedenen Themen in einfachen sprachlichen Strukturen zu formulieren und über sie im Präsens zu berichten. Die Studierenden üben zum Beispiel einfache Fragen zum Beruf zu stellen und zu beantworten, sich über Freizeitbeschäftigungen und Hobbys auszutauschen, Einkaufsgespräche zu führen, eine Speisekarte zu verstehen und etwas zu

bestellen, zu fragen, was man gern zu den Mahlzeiten isst und trinkt. Es werden kommunikative Situationen geübt, die auf einen Aufenthalt im Zielland vorbereiten. Dazu werden die notwendigen grammatikalischen Themen behandelt und Lernstrategien vermittelt, die eine erfolgreiche Gestaltung des weiteren Lernprozesses in der Fremdsprache Russisch ermöglichen.

Intended Learning Outcomes:

Dieses Modul orientiert sich am Niveau A1 des Gemeinsamen Europäischen Referenzrahmens (GER). Nach Bestehen des Moduls sind die Studierenden in der Lage vertraute, alltägliche Ausdrücke und einfache Sätze zu verstehen und zu verwenden, die auf die Befriedigung konkreter Bedürfnisse zielen. Die Studierenden können sich auf einfache Art verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Die Studierenden können einfache Fragen stellen und beantworten, einfache Feststellungen treffen oder auf solche reagieren, sofern es sich um unmittelbare Bedürfnisse oder um sehr vertraute Themen handelt.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-, Partner- und Gruppenarbeit; kontrolliertes Selbstlernen mit vorgegebenen Materialien; Vorbereitung einer Präsentation in der Zielsprache; selbständige Recherchen zu den vorgegebenen Themen. Freiwillige Hausaufgaben festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der LV bekannt gegeben); multimedial gestütztes Lehr- und Lernmaterial (wird in der LV bekannt gegeben)

Vom Kursleiter selbst angefertigte / zusammengestellte Übungen; Auszüge aus kopierbaren Lehrmaterialien; Online-Materialien

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Russisch A1.2 (Seminar, 2 SWS)

Gauß K

SZ0909: Russian as language of origin from B1 | Russisch als Herkunftssprache ab B1

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency: irregularly
Bachelor/Master	Language taught	one semester	
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Kumulative Prüfungsleistungen (mehrere Aufgaben). Hilfsmittel erlaubt.

Bei den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Fragen zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Leseverstehen, sowie Aufgaben zur freien Textproduktion. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlicher Textproduktion überprüft. Version 1: In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Anwendung von Wortschatz und Grammatik, zu Lese- und Hörverstehen sowie zur freien Textproduktion und wird in Form von kompetenz- und handlungsorientierten kumulativen Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Version 2: Schriftliche Abschlussklausur (keine Hilfsmittel erlaubt). Prüfungsdauer: 90 Minuten. In der schriftlichen Prüfung werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhaltet Fragen zur Anwendung von Wortschatz und Grammatik, zu Text- bzw. Leseverstehen sowie Aufgaben zur freien Textproduktion. Mündliche Reaktionsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft.

Repeat Examination:

(Recommended) Prerequisites:

Russisch als Herkunftssprache mit der kommunikativen Fertigkeit der Stufe A2.2 und höher.

Content:

In dieser Lehrveranstaltung werden grundlegende Kenntnisse in der Herkunftssprache Russisch vermittelt, die es den Teilnehmern ermöglichen,

zielorientiert an systematischen wie individuellen Defiziten bei der Beherrschung der russischen Sprache zu arbeiten, um sichere Kenntnisse in allen grundlegenden Sprachfertigkeiten zu erlangen. Dazu werden ausgewählte wie auf die Bedürfnisse der Teilnehmer orientierte Themen der Grammatik behandelt (u. A. gram. Fälle, Verbaspekte, Verben der Bewegung) und der moderne alltägliche wie fach- und studienbezogener Wortschatz aufgebaut/aufgefrischt. Die Teilnehmer werden für Stilistik der russischen Sprache bei Wort und Schrift sensibilisiert. Die Lesefertigkeit wird anhand aktueller landesbezogener Lektüre aufgebaut/erweitert und der schriftliche Ausdruck (inkl. Schreibschrift) bei thematischen Zusammenfassungen, Aufsätzen, fiktiven Blogbeiträgen etc. geübt. Auch an der korrekten Aussprache wird bei bestehendem Bedarf gearbeitet. Die Teilnehmer bekommen die Möglichkeit, einen kurzen Vortrag zu einem selbstgewählten Thema zu halten.

Intended Learning Outcomes:

Diese Lehrveranstaltung orientiert sich am Niveau B1 des Gemeinsamen Europäischen Referenzrahmens (GER). Von der zu erwarteten hohen mündlichen Kompetenz der Teilnehmer ausgehend, werden die Studierenden unter Berücksichtigung des individuellen Bedarfs an die sichere Beherrschung der Stufe B1 herangeführt, wobei systematische sowie individuelle Defizite bei Grammatik, Leseverständnis, schriftlichem Ausdruck, Stilistik, Aussprache und modernem Wortschatz ausgeglichen werden. Nach Abschluss dieser Lehrveranstaltung beherrschen die Teilnehmer die Herkunftssprache Russisch auf hohem Niveau in allen grundlegenden sprachlichen Fertigkeiten. Sie kommunizieren und sind imstande sich schriftlich auszudrucken unter Verwendung der niveauentsprechenden Grammatik, Stilistik und modernem alltäglichen sowie fach- und studienspezifischen Wortschatz. Sie beherrschen die Schreibschrift und sind imstande niveauentsprechende allgemeine wie studien- und fachbezogene Texte zu lesen und über diese zu diskutieren.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Lese-, Schreib- und Sprechübungen; Einzel-, Partner- und Gruppenarbeit; kontrolliertes Selbstlernen grundlegender grammatischer Phänomene in der Herkunftssprache mit vorgegebenen Materialien; Förderung kooperativen Lernens; eigenständiges Vorbereiten der Vorträge; Diskussionen in Gruppen zu vorbereiteten sowie frei/spontan gewählten Themen. Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der LV bekannt gegeben)

Vom Kursleiter selbst angefertigte / zusammengestellte Übungen; Auszüge aus kopierbaren Lehrmaterialien; Online-Materialien

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Russisch als Herkunftssprache ab B1 (Seminar, 2 SWS) Legkikh V

SZ1001: Swedish A1 | Schwedisch A1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht.

Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Schwedisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen trotz geringer Sprachkenntnisse zurechtzufinden.

Wir lernen / üben grundlegendes Vokabular zu Themen wie Familie, Wohnen, Beruf, Freizeit, Landeskunde und in einfach strukturierten Haupt- und Nebensätzen Alltägliches im Präsens zu berichten; Plural der Nomen; Personal-, Reflexiv-, Demonstrativ- und einige Possessivpronomen; einfache Negationsformen; den Gebrauch einiger Modalverben und Präpositionen; Adjektivdeklination.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A1 des GER. Der/die Studierende erlangt Grundkenntnisse in der Fremdsprache Schwedisch mit allgemeinsprachlicher Orientierung unter Berücksichtigung kultureller und landeskundlicher Aspekte. Nach Abschluss dieses Moduls kann er/sie alltägliche Ausdrücke und sehr einfache Sätze verstehen und verwenden, die auf die Befriedigung konkreter, in der Bewältigung des Alltags wesentlicher Bedürfnisse zielen. Der/die Studierende kann sich auf einfache Art verständigen, wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Er/Sie kann beispielsweise einfache Fragen zu Person und Familie stellen und beantworten sowie Verabredungen treffen.

Sowohl im mündlichen als auch im schriftlichen Sprachgebrauch ist der/die Studierende in der Lage, situationsadäquat, bzw. der A1-Stufe entsprechend, Wortschatz und Grammatik korrekt anzuwenden.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-Partner- und Gruppenarbeit; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien; Referieren und Präsentieren nach vorgegebenen Kriterien; moderierte (Rollen-) Diskussionen.

Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial (wird in der LV bekannt gegeben)

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Schwedisch A1 (Seminar, 2 SWS) Dai Javad P, Matyas E

Blockkurs Schwedisch A1 (Seminar, 2 SWS)

Thunstedt C

SZ1002: Swedish A2 | Schwedisch A2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Die Prüfungsleistungen werden in Form von kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben erbracht.

Hilfsmittel sind erlaubt.

Die Prüfungsleistungen sind in ihrer Gesamtheit so konzipiert, dass die Anwendung von Wortschatz und Grammatik, das Lese- und/oder Hörverstehen sowie die freie Textproduktion geprüft werden.

Mündliche Kommunikationsfähigkeiten werden anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Bestandene Abschlussklausur A1

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Schwedisch vermittelt, die es den Studierenden - trotz noch geringer Sprachkenntnisse – ermöglichen sollen, sich in alltäglichen Grundsituationen zurechtzufinden.

Wir lernen/üben grundlegendes Vokabular und Konversation und produzieren auch kürzere Texte (z. B. Brief; Textzusammenfassung und Kurzpräsentationen); vertiefen und erweitern die Grammatik aus der A1-Stufe und lesen Texte in leicht leserlicher Form.

Grammatische Inhalte: Wiederholung der Pronomen; Komplettierung der Possessivpronomen; komplexer strukturierte Haupt- und Nebensätze mit Modalverben; Imperativ; Präteritum; Perfekt

und Plusquamperfekt; Zeitausdrücke /-angaben; Zeit-, Ort- und Richtungsadverbien, Steigerung des Adjektivs.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A2 des GER. Der/Die Studierende erlangt Grundkenntnisse in Schwedisch mit allgemein sprachlicher Orientierung unter Berücksichtigung kultureller und landeskundlicher Aspekte. Nach Abschluss dieses Moduls kann der/die Studierende im Gespräch einfache Sätze und Redewendungen zu einem erweiterten Spektrum an vertrauten Themen verstehen und gebrauchen. Dabei handelt es sich um grundlegende Informationen zu alltäglichen Themen unter Einbeziehung landeskundlicher Aspekte. Der/die Studierende ist in der Lage kurze informative Texte oder Mitteilungen zu grundlegenden Situationen zu verfassen und kann längere Texte zu vertrauten Themen verstehen, in denen gängige bzw. einfache alltagsbezogene Sprache verwendet wird und in denen vorhersehbare Informationen zu finden sind.

Sowohl im mündlichen als auch im schriftlichen Sprachgebrauch ist der/die Studierende in der Lage, situationsadäquat, bzw. der A2-Stufe entsprechend, Wortschatz und Grammatik korrekt anzuwenden.

Teaching and Learning Methods:

Kommunikatives und handlungsorientiertes Erarbeiten der Inhalte; gezielte Hör-, Lese-, Schreibund Sprechübungen; Einzel-Partner- und Gruppenarbeit; Kontrolliertes Revidieren einzelner Aspekte der Grammatik mit vorgegebenen (online-) Materialien; Referieren und Präsentieren nach vorgegebenen Kriterien; moderierte (Rollen-) Diskussionen.

Freiwillige Hausaufgaben zur Vor- und Nachbearbeitung festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial

Reading List:

Lehrbuch (wird in der LV bekannt gegeben); multimedial gestütztes Lehr- und Lernmaterial

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Schwedisch A2 (Seminar, 2 SWS)

Matyas E, Thunstedt C

SZ1201: Spanish A1 | Spanisch A1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Rezeption (Lese- und Hörverstehen) sowie zur Produktion (Wortschatz und Grammatik sowie freie Textproduktion) und werden in Form von kommunikativen kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Produktion wird anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei abgehalten. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Spanisch vermittelt, die es den Studierenden ermöglichen, sich in vertrauten und alltäglichen Grundsituationen trotz noch geringer Sprachkenntnisse zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt.

Die Studierenden lernen, einfache Fragen zur Person/Familie zu stellen und zu beantworten, Anmeldeformulare mit persönlichen Daten auszufüllen, über Studium, Beruf und Freizeitaktivitäten zu sprechen, Gefallen, Interessen und Vorlieben auszudrücken, Orte zu beschreiben etc. Sie lernen/üben grundlegendes Vokabular zu diesen Themen und berichten in einfach strukturierten Hauptsätzen über Alltägliches im Präsens. Es werden u.a. folgende Themen der Grammatik behandelt: Präsens regelmäßiger und (einige) unregelmäßiger Verben, bestimmte und unbestimmte Artikel, Demonstrativpronomen, Verneinung einfacher Sätze etc.

Es werden Strategien vermittelt, die eine Verständigung in alltäglichen Grundsituationen ermöglichen.

Intended Learning Outcomes:

Das Modul orientiert sich am Niveau A1 "Elementare Sprachverwendung" des GER. Der/die Studierende kann nach der Teilnahme an der Modulveranstaltung einfache Fragen über vertraute Themen stellen und beantworten. Er/sie kann sich auf einfache Art verständigen, wenn die Gesprächspartnerinnen oder Gesprächspartner langsam und deutlich sprechen und bereit sind zu helfen. Er/sie kann einfache schriftliche Mitteilungen zur Person machen.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechaufgaben in Einzel-, Partner und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch die Kombination dieser Aufgaben wird die Interaktion mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Spanisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben).

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Spanisch A1 (Seminar, 2 SWS)

Galan Rodriguez F, Garcia Garcia M, Gonzalez Sainz C, Guerrero Madrid V, Hernandez Jimenez L, Listan Rosa M, Lopez Agudo E, Navarro Reyes A, Noch nicht bekannt N, Pardo Gascue F, Rey Pereira C, Rodriguez Garcia M, Zuniga Chinchilla L

Blockkurs Spanisch A1 (Seminar, 2 SWS)
Garcia Garcia M, Gomez Cabornero S, Pardo Gascue F, Rodriguez Garcia M
For further information in this module, please click campus.tum.de or here.

SZ1202: Spanish A2.1 | Spanisch A2.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Rezeption (Lese- und Hörverstehen) sowie zur Produktion (Wortschatz und Grammatik sowie freie Textproduktion) und werden in Form von kommunikativen kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Produktion wird anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei abgehalten. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Gesicherte Kenntnisse der Stufe A1. Einstufungstest mit Ergebnis A2.1.

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Spanisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen zurechtzufinden, z.B. Freizeitaktivitäten, auf Reisen, im Restaurant, unter Kommilitonen, Freunden und Nachbarn, Austausch von Erfahrungen etc. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt.

Die grammatikalischen Strukturen werden weiter aufgebaut, wie z.B. die Verwendung von den Vergangenheiten pretérito perfecto - pretérito indefinido, ser und estar, unbetonte Personal Pronomen etc.

Es werden Strategien vermittelt, die mündlich wie schriftlich eine Verständigung trotz noch geringer Sprachkenntnisse ermöglichen.

Intended Learning Outcomes:

Dieses Modul orientiert sich am Niveau A2 "Elementare Sprachverwendung" der GER. Nach der Teilnahme an der Modulveranstaltung sind die Studierenden in der Lage, die Bedeutung von kurzen, klaren und deutlich artikulierten Mitteilungen und Durchsagen zu erfassen. Die Kommunikation ist im Rahmen von einfachen, routinemäßigen Kontexten möglich. Der Austausch von Informationen erfolgt über kurze Dialoge mit verschiedenen Zeitbezügen (z.B. Gegenwart, Vergangenheit, einfaches Futur) und umfasst einfache Satzgefüge mit beschränkten Strukturen zu vertrauten Tätigkeiten. Der/Die Studierende kann einfache Fragen zu Inhalten stellen und auch beantworten. Gespräche und Dialoge sind kurz, zeitlich beschränkt und orientieren sich inhaltlich an Kontexten, wie z.B. Familie, Freunde, Lebens- und Wohnraum, Reisen. Die Studierenden können kurze Texte oder Briefe lesen und verstehen, wenn diese einen häufig gebrauchten Wortschatz und bekannte Strukturen beinhaltet und wenn darin vertraute Informationen zu finden sind. Er/Sie ist in der Lage mithilfe feststehender Wendungen kurze, einfache Mitteilungen oder persönliche Briefe zu verfassen.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechaufgaben in Einzel-, Partner und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch die Kombination dieser Aufgaben wird die Interaktion mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Spanisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben).

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Spanisch A2.1 (Seminar, 2 SWS)

Galan Rodriguez F, Guerrero Madrid V, Listan Rosa M, Lopez Agudo E, Mayea von Rimscha A, Navarro Reyes A, Noch nicht bekannt N

Blockkurs Spanisch A2.1 (Seminar, 2 SWS)

Listan Rosa M, Lopez Paredes M

SZ1203: Spanish A2.2 | Spanisch A2.2

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Rezeption (Lese- und Hörverstehen) sowie zur Produktion (Wortschatz und Grammatik sowie freie Textproduktion) und werden in Form von kommunikativen kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Produktion wird anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei abgehalten. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Gesicherte Kenntnisse der Stufe A2.1. Einstufungstest mit Ergebnis A2.2.

Content:

In diesem Modul werden weitere Grundkenntnisse der Fremdsprache Spanisch vermittelt, die den Studierenden ermöglichen, sich in alltäglichen Grundsituationen zurechtzufinden. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt. Die Studierenden lernen/üben u.a. Anweisungen und Ratschläge zu geben; Situationen und Ereignisse in der Vergangenheit zu schildern; Geschichten zu erzählen; über die Wohnungssuche zu sprechen. Dazu werden entsprechende hierfür notwendige grammatikalische Themen behandelt wie die Verwendung und Kontrast der Zeiten der Vergangenheit, pretérito imperfecto und pretérito indefinido, das Imperativ, das Gebrauch von Präpositionen etc. Es werden Strategien vermittelt, die eine Verständigung trotz noch geringer Sprachkenntnisse (in alltäglichen Grundsituationen) ermöglichen.

Intended Learning Outcomes:

Dieses Modul orientiert sich am Niveau A2 "Elementare Sprachverwendung" des GER. Nach der Teilnahme an der Modulveranstaltung sind die Studierenden in der Lage vertraute Sätze und Redewendungen zu einem erweiterten Spektrum an Themen zu verstehen. Dabei handelt es sich um grundlegende Informationen zu alltäglichen oder Studien- bzw. berufsrelevanten Themen. Sie erfassen die Bedeutung von kurzen, klaren und deutlich artikulierten Mitteilungen und Durchsagen. Der Austausch von Informationen erfolgt kurz aber mühelos über eine Reihe bekannter Äußerungen zu vertrauten Tätigkeiten und Themen. Die Studierenden können sich aktiv in kurzen Interaktionen, die über einen beschränkten zeitlichen Umfang gehen, zu bekannten Themen einbringen. Er/Sie kann längere Texte und Briefe zu vertrauten Themen verstehen, in denen gängige aber einfache alltags- oder berufsbezogene Sprache verwendet wird und in denen vorhersehbare Informationen zu finden sind. Der/Die Studierende ist in der Lage, mithilfe feststehender Wendungen kurze, informative Texte oder Mitteilungen zu verfassen. Es werden Haupt- und Nebensätze verwendet, die durch eine Reihe von Bindewörtern kontextadäquat verbunden werden.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechaufgaben in Einzel-, Partner und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch die Kombination dieser Aufgaben wird die Interaktion mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Spanisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben).

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Spanisch A2.2 (Seminar, 2 SWS)

Gomez Cabornero S, Guerrero Madrid V, Iglesias Martin A, Lopez Paredes M, Martinez Wahnon A, Mayea von Rimscha A, Noch nicht bekannt N

Blockkurs Spanisch A2.2 (Seminar, 2 SWS)
Mayea von Rimscha A
For further information in this module, please click campus.tum.de or here.

SZ1207: Spanish A1 + A2.1 | Spanisch A1 + A2.1

Version of module description: Gültig ab summerterm 2022

Module Level:	Language:	Duration:	Frequency:
Bachelor/Master	Language taught	one semester	irregularly
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
6	180	120	60

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Rezeption (Lese- und Hörverstehen) sowie zur Produktion (Wortschatz und Grammatik sowie freie Textproduktion) und werden in Form von kommunikativen kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Produktion wird anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei abgehalten. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

keine

Content:

In diesem Modul werden Grundkenntnisse in der Fremdsprache Spanisch vermittelt, die es den Studierenden ermöglichen, sich in alltäglichen Grundsituationen zurechtzufinden, z.B. auf Reisen, im Restaurant, unter Kommilitonen, Freunden und Nachbarn, Austausche von Erfahrungen etc. Die Studierenden lernen Fragen zur Person/Familie zu stellen und zu beantworten, Anmeldeformulare mit persönlichen Daten auszufüllen, über Studium, Beruf und Freizeitaktivitäten zu sprechen, Gefallen, Interessen und Vorlieben auszudrücken, Orte zu beschreiben. Dabei werden interkulturelle und landeskundliche Aspekte berücksichtigt.

Es werden u.a. folgende Themen der Grammatik behandelt: Präsens regelmäßiger und unregelmäßiger Verben, bestimmte und unbestimmte Artikel, Demonstrativpronomen, Verneinung einfacher Sätze, Verwendung von den Vergangenheiten pretérito perfecto - pretérito indefinido, ser und estar, unbetonte Personal Pronomen etc.

Es werden Strategien vermittelt, die eine Verständigung in alltäglichen Grundsituationen ermöglichen.

Intended Learning Outcomes:

Die Lernergebnisse orientieren sich am Niveau A2 "Elementare Sprachverwendung" des GER. Der/die Studierende kann nach der Teilnahme an der Modulveranstaltung sich auf einfache Art verständigen, wenn die Gesprächspartner*in langsam und deutlich sprechen und bereit sind zu helfen. Er/sie ist in der Lage die Bedeutung von kurzen, klaren und deutlich artikulierten Mitteilungen und Durchsagen zu erfassen. Die Kommunikation ist im Rahmen von einfachen, routinemäßigen Kontexten möglich. Der Austausch von Informationen erfolgt über kurze Dialoge mit verschiedenen Zeitbezügen (z.B.: Gegenwart, Vergangenheit, einfaches Futur) und umfasst einfache Satzgefüge mit beschränkten Strukturen zu vertrauten Tätigkeiten. Der/Die Studierende kann einfache Fragen zu Inhalten stellen und auch beantworten. Gespräche und Dialoge sind kurz, zeitlich beschränkt und orientieren sich inhaltlich an Kontexten, wie z.B. Familie, Freunde, Lebens- und Wohnraum, Reisen. Die Studierenden können kurze Texte oder Briefe lesen und verstehen, wenn diese einen häufig gebrauchten Wortschatz und bekannte Strukturen beinhaltet und wenn darin vertraute Informationen zu finden sind. Er/Sie ist in der Lage mithilfe feststehender Wendungen kurze, einfache Mitteilungen oder persönliche Briefe zu verfassen.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechaufgaben in Einzel-, Partner und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch die Kombination dieser Aufgaben wird die Interaktion mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Spanisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben).

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Spanisch A1 + A2.1 (intensiv) (Seminar, 4 SWS)

Garcia Garcia M, Nevado Cortes C, Pardo Gascue F, Rodriguez Garcia M, Zuniga Chinchilla L For further information in this module, please click campus.tum.de or here.

SZ1218: Spanish B1.1 | Spanisch B1.1

Version of module description: Gültig ab summerterm 2022

Module Level: Bachelor/Master	Language: Language taught	Duration: one semester	Frequency: winter/summer semester
Credits:* 3	Total Hours:	Self-study Hours:	Contact Hours:
	90	60	30

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

In den Prüfungsleistungen werden die in der Modulbeschreibung angegebenen Lernergebnisse geprüft. Sie beinhalten Aufgaben zur Rezeption (Lese- und Hörverstehen) sowie zur Produktion (Wortschatz und Grammatik sowie freie Textproduktion) und werden in Form von kommunikativen kompetenz- und handlungsorientierten (Portfolio-) Prüfungsaufgaben abgehalten. Hilfsmittel erlaubt. Mündliche Produktion wird anhand der Anwendung entsprechender Redemittel in schriftlichen Dialogbeispielen überprüft und/oder in Form einer Audio-/Videodatei abgehalten. Hierzu beachten wir die Datenschutzgrundverordnung (DSGVO, Art. 12 -21).

Repeat Examination:

(Recommended) Prerequisites:

Gesicherte Kenntnisse der Stufe A2.2. Einstufungstest mit Ergebnis B1.1.

Content:

In diesem Modul werden Kenntnisse in der Fremdsprache Spanisch erarbeitet, die es den Studierenden ermöglichen, (sich) in vertrauten Situationen, z.B. in Studium, Arbeit, Freizeit und Familie, und zu Themen von allgemeinem Interesse selbständig und sicher zu operieren/bewegen/verständigen, wenn Standardsprache verwendet wird. Sie erweitern Ihren Wortschatz sowie festigen und vertiefen die bisher erlernten grammatikalischen Schwerpunkte der spanischen Sprache. Die Studierenden lernen/üben u.a. wie man Vermutungen anstellt; über biografische und historische Ereignisse spricht; wie man Wünsche und Gefühle ausdrückt. Dazu werden entsprechende, hierfür notwendige grammatische Themen behandelt.

Intended Learning Outcomes:

Die Studierende erlangt in diesem Modul vertiefte Kenntnisse in der Fremdsprache Spanisch mit allgemeinsprachlicher Orientierung unter Berücksichtigung interkultureller und landeskundlicher Aspekte. Nach erfolgreicher Teilnahme am Modul kann der/die Studierende sich in den ihm/ ihr vertrauten Situationen, denen man im Studium oder Beruf, Freizeit und auf Reisen im Sprachgebiet begegnen kann, sicher verständigen. Der/Die Studierende ist in der Lage, wesentliche Inhalte in einfachen authentischen Texten aus alltäglichen Bereichen zu verstehen, und sich spontan an Gesprächen zu vertrauten Themen zu beteiligen. Die Studierenden können mündlich wie schriftlich über Erfahrungen, Gefühle und Ereignisse einfach und zusammenhängend berichten und zu vertrauten Themen eine persönliche Meinung äußern und argumentieren.

Teaching and Learning Methods:

Das Modul besteht aus einem Seminar, in dem die angestrebten Lerninhalte mit gezielten Hör-, Lese-, Schreib- und Sprechaufgaben in Einzel-, Partner und Gruppenarbeit kommunikativ und handlungsorientiert erarbeitet werden. Durch die Kombination dieser Aufgaben wird die Interaktion mit den Partnern unterstützt und gefordert. Die Studierenden erwerben Teamkompetenz durch kooperatives Handeln in gemischten Gruppen.

Es werden Möglichkeiten aufgezeigt, den Lernprozess in der Fremdsprache Spanisch eigenverantwortlich und effektiver zu gestalten und damit die eigenen Lernfähigkeiten zu verbessern.

Durch kontrolliertes Selbstlernen grundlegender grammatischer Phänomene und Kommunikationsmuster in der Fremdsprache mit vorgegebenen (online-) Materialien werden die im Seminar vermittelten Grundlagen vertieft.

Freiwillige Hausaufgaben (zur Vor-und Nacharbeitung) festigen das Gelernte.

Media:

Lehrbuch; multimedial gestütztes Lehr- und Lernmaterial, auch online.

Reading List:

Lehrbuch (wird in der Lehrveranstaltung bekanntgegeben).

Responsible for Module:

Courses (Type of course, Weekly hours per semester), Instructor:

Spanisch B1.1 (Seminar, 2 SWS)

Galan Rodriguez F, Iglesias Martin A, Martinez Wahnon A, Navarro Reyes A, Nevado Cortes C, Noch nicht bekannt N

Blockkurs Spanisch B1.1 (Seminar, 2 SWS)

Galan Rodriguez F, Tapia Perez T

Bachelor's Thesis | Bachelor's Thesis

Module Description

WZ0160: Bachelor's Thesis incl. Colloquium | Bachelor's Thesis mit Abschlusskolloquium

Version of module description: Gültig ab summerterm 2019

Module Level: Bachelor	Language: German/English	Duration: one semester	Frequency: winter/summer semester
Credits:*	Total Hours:	Self-study Hours:	Contact Hours:
15	360		360

Number of credits may vary according to degree program. Please see Transcript of Records.

Description of Examination Method:

Prüfungsart: Wissenschaftliche Ausarbeitung und Präsentation

Prüfungsdauer: 3 Monate

Prüfungswiederholung: geregelt durch die FPSO

Die Prüfungsleistung ist im Rahmen einer schriftlichen, benoteten Ausarbeitung (Bachelor's Thesis) und einem unbenoteten Kolloquium darüber von den Studierenden zu erbringen. Die Thesis selbst ist eine weitgehend selbständige wissenschaftliche Ausarbeitung eines biowissenschaftlichen Projekts. In dieser schriftlichen Arbeit müssen die Studierenden darlegen, dass sie befähigt sind, ein wissenschaftliches Thema zu erfassen, bestehende oder neu aufzubauende Versuchsstrukturen zu nutzen und gewonnene Ergebnisse strukturiert darzustellen. Die wissenschaftliche Ausarbeitung umfasst demnach die theoretische und technische Vorbereitung des Projekts, die im allgemeine notwendigen Laborarbeiten, Darstellung des Themas und der verwendeten technischen Materialien und Methoden, die Datenerfassung und Datenauswertung, Diskussion und Vorstellung der Ergebnisse und eine Niederschrift nach internationalen Gepflogenheiten naturwissenschaftlicher Ergebnisdarstellung.

Anhand des unbenoteten Kolloquiums (30 min) das einen Vortrag mit etwa 15 min. und mit abschließender themenrelevanten Diskussion zeigen die Studierende, dass Sie das Projekt auch vortragen und erklären können und Fragen, die über die schriftliche Ausarbeitung gehen, beantworten können als auch, dass sie sich einer

Repeat Examination:

wissenschaftlichen Diskussion stellen können.

(Recommended) Prerequisites:

Studienfortschritt wie in der FPSO §49 Abs. 2 vorgesehen.

Content:

Die Thematik der Thesis kann vom Studierenden gewählt werden. In den Aushängen werden Themen vorgeschlagen, auch eigene Vorstellungen können eingebracht werden. Projekte knüpfen an aktuelle Forschungsprojekte des aufnehmenden Lehrstuhls, des Instituts oder der Organisationseinheit. In der Regel handelt es sich Forschungsprojekte mit einem praktischen Laborteil. Andere, beispielsweise rein theoretische, Themen bzw. extern betreute Projekte bedürfen einer Genehmigung durch den zuständigen Prüfungsausschuss. Der Studierende legt mit dem jeweiligen Prüfer den Projektplan fest. Es soll sich um klar abgegrenzte Fragestellungen handeln. Grundlage der Thesis ist immer eine schriftliche wissenschaftliche Ausarbeitung deren Ausarbeitung zwischen 50 und 80 Seiten nicht überschreiten soll. Die Arbeit kann in deutscher oder englischer Sprache verfasst werden. Eine Zusammenfassung in der jeweils anderen Sprache sollte vorhanden sein.

Intended Learning Outcomes:

Nach Abschluss des Moduls sind die Studierenden in der Lage in einem selbstgewählten oder vorgegebenen Thema einfache wissenschaftliche Fragestellungen auf Basis wissenschaftlicher Methoden und analytischen Denkens eigenständig zu bearbeiten. Sie sind in der Lage einen realistischen Zeitplan aufzustellen und einzuhalten. Sie können ihre Ergebnisse schlüssig und strukturiert darstellen, schriftlich wie im Gespräch diskutieren und daraus Schlussfolgerungen ziehen.

Sie können eigene Anpassungen der Versuche erläutern. Über dies hinaus sind sie in der Lage, die Erkenntnisse zu präsentieren und in einer Diskussion themenrelevante Fragen in einem wissenschaftlichen Diskurs zu beantworten. Sie haben Erkenntnis darüber erlangt, welche Anforderungen an wissenschaftliche Arbeit und an professionelles wissenschaftliches Arbeiten gestellt werden.

Teaching and Learning Methods:

Lehrmethode: Einzelarbeit unterstützt durch wissenschaftliches Personal Lernmethode: Im Rahmen der Bachelor's Thesis wird von den Studierenden eine wissenschaftliche Fragestellung weitgehend eigenständig bearbeitet. Hierbei kommen beispielsweise sowohl

Literaturrecherche und -studium als auch Freiland- und Laborarbeit zum Einsatz. Die Studierenden lernen, durch genaue Beobachtung und eigenverantwortliche Datengewinnung ihre eigene Arbeit kritisch zu betrachten, mögliche Fehler zu suchen und Kritik produktiv umzusetzen.

Die tatsächlichen Lehr- und Lernmethoden richten sich nach der jeweiligen Fragestellung und sind im Einzelfall mit dem entsprechenden Betreuer abzuklären.

Media:

Wissenschaftliche Veröffentlichungen, Fachbücher, Software.

Reading List:

Themenspezifisch.

Literatur ist in Abhängigkeit vom jeweiligen Thema in Absprache mit dem Betreuer zu nutzen und/ oder selbstständig von den Studierenden zu recherchieren.

Responsible for Module:

Der jeweilige vom Prüfungsausschuss genehmigte Themensteller und Prüfer.

Courses (Type of course, Weekly hours per semester), Instructor:

Alphabetical Index

	=
Carl-von-Linde Akademie	122
A	_
[MA9609] Advanced Mathematics and Statistics Höhere Mathematik und Statistik	11 - 13
[WI001088] Advanced Modeling, Optimization, and Simulation in Operations Management Advanced Modeling, Optimization, and Simulation in Operations Management [AMOS]	117 - 119
[CLA11216] Agile project management hands-on Agile project management hands-on	130 - 131
[LS20025] Applied Data Science in the Life Sciences Applied Data Science in the Life Sciences	75 - 77
[MA9607] Applied statistics Angewandte Statistik [SZ0118] Arabic A1.1 Arabisch A1.1	81 - 82 138 - 139
В	_
Bachelor's Thesis Bachelor's Thesis [WZ0160] Bachelor's Thesis incl. Colloquium Bachelor's Thesis mit	207 207 - 209
Abschlusskolloquium [WZ2009] Biochemical Analytics Biochemische Analytik	49 - 50
[MW2094] Biochemical Engineering Bioverfahrenstechnik	59 - 60
[CH0936] Biochemistry 1 Biochemie 1 [WZ0266] Biochemistry 2 Biochemie 2	14 - 18 23 - 26
[CH0950] Biochemistry 3 Biochemie 3	51 - 53
[CH0953] Bioinorganic Chemistry Bioanorganische Chemie	85 - 87
С	-
[WZ2645] Cell Culture and Molecular Genetics Zellkultur und Molekulargenetik	64 - 65
[WZ2674] Challenges of Biomedicine. Social, Political and Ethical Aspects of Medical Biology Herausforderungen der Biomedizin. Soziale, politische und ethische Dimension der medizinischen Biologie	103 - 105
[SZ0209] Chinese A1.1 Chinesisch A1.1	140 - 141
[SZ0210] Chinese A1.2 Chinesisch A1.2	142 - 143

Module Catalog of the study program B.Sc. Molecular Biotechnology Generated on 10.09.2024

210 of 214

[SZ0211] Chinese A2.1 Chinesisch A2.1 [SZ0218] Chinese - Business Chinese 1 Chinesisch - Wirtschaftschinesisch 1 [CLA30803] Cognitive Science: Thinking, Perceiving, and Knowing Cognitive Science: Denken, Erkennen und Wissen [CH0109] Composition and Structure of Organic Compounds Aufbau und	144 - 145 146 - 147 122 - 123 33 - 35
Struktur organischer Verbindungen	აა - აა
E	
Elective Modules Wahlmodule	75
[SZ0429] English - English for Scientific Purposes C1 English - English for Scientific Purposes C1	150 - 151
[SZ0430] English - English in Science and Technology C1 Englisch - English in Science and Technology C1	152 - 153
[SZ0488] English - Gateway to English Master's C1 Englisch - Gateway to English Master's C1	154 - 155
[SZ0425] English - Introduction to Academic Writing C1 Englisch - Introduction to Academic Writing C1	148 - 149
F	
[SZ0501] French A1.1 Französisch A1.1	156 - 157
[SZ0502] French A1.2 Französisch A1.2	158 - 159
[SZ0504] French A2.2 Französisch A2.2	160 - 161
[SZ0512] French B1/B2 - Conversation Course: French Society Französisch B1/B2 - Cours de conversation: La société française	162 - 163
G	
General Education Subject Allgemeinbildendes Fach	103
[ME2522] General Pharmacology for Students of Biological Sciences Allgemeine Pharmakologie für Studierende der Biowissenschaften	57 - 58

Η

[WZ5012] Hygienic Processing 2 - Aseptic and Sterile Processing Hygienic Processing 2 - Aseptik und Sterilprozesstechnik		
<u> </u>		
[CH0948] Inorganic Chemistry Anorganische Chemie	7 - 10	
[CLA20424] Intercultural Encounters Interkulturelle Begegnungen	134 - 135	
[CLA11317] Interdisciplinary Lecture Series Environment: Politics and	132 - 133	
Society Ringvorlesung Umwelt: Politik und Gesellschaft		
[CH0221] Internship Biological Chemistry Praktikum Biologische Chemie	45 - 48	
[WZ2634] Introduction to Bioinformatics I Bioinformatik für Biowissenschaften I	41 - 42	
[WZ2644] Introduction to Biotechnology Einführung in die Biotechnologie	54 - 56	
[LS20002] Introduction to Epigenetics Einführung in die Epigenetik	78 - 80	
[WZ2002] Introduction to Genetics Einführung in die Genetik	36 - 37	
[IN8003] Introduction to Informatics Informatik	94 - 95	
[LS20000] Introduction to Microbiology Grundlagen der Mikrobiologie	30 - 32	
[WZ2450] Introduction to Mycology Einführung in die Mykologie	88 - 89	
[WZ2516] Introduction to Plant Developmental Genetics Einführung in die	90 - 91	
Entwicklungsgenetik Pflanzen		
[SZ0602] Italian A1.1 Italienisch A1.1	164 - 165	
[SZ0605] Italian A1.2 Italienisch A1.2	166 - 167	
J		
[SZ0705] Japanese A1.1 Japanisch A1.1	168 - 169	
[SZ07052] Japanese A1.1 + A1.2 Japanisch A1.1 + A1.2	170 - 171	
[SZ0706] Japanese A1.2 Japanisch A1.2	172 - 173	
K		
[SZ1808] Korean A1.1 Koreanisch A1.1	174 - 175	

_			

Language Center Sprachenzentrum	138
[CLA31900] Lecture Series Environment - TUM Vortragsreihe Umwelt - TUM	128 - 129
M	
[WI000820] Marketing and Innovation Management Marketing and Innovation Management	114 - 116
[WZ2692] Microbial Ecology and Microbiomes Mikrobielle Ökologie und Mikrobiome	83 - 84
[CLA30202] Mind - Brain - Machine Geist - Gehirn - Maschine	124 - 125
[CLA40202] Mind - Brain - Machine Geist - Gehirn - Maschine	126 - 127
[WZ2034] Molecular Bacterial Genetics and Metabolic Engineering Molekulare Bakteriengenetik und Metabolic Engineering	66 - 67
[WZ2646] Molecular Plant Biology and Plant Breeding Molekulare Pflanzenbiologie und Züchtung	96 - 97
N	
[WZ2457] Neurobiology Neurobiologie	98 - 99
[WZ2457] Neurobiology Neurobiologie	106 - 107
[SZ1701] Norwegian A1 Norwegisch A1	176 - 177
[SZ1702] Norwegian A2 Norwegisch A2	178 - 179
P	
[CLA21023] Passing Exams in Relaxed Mode Entspannt Prüfungen bestehen	136 - 137
[ED0180] Philosophy and Social Sciences of Technology Philosophie und Sozialwissenschaft der Technik	108 - 109
[CH0655] Physical Chemistry 1 Physikalische Chemie 1	38 - 40
[CH0665] Physical Chemistry 2 Physikalische Chemie 2	72 - 74
[PH9034] Physics for Life Sciences Physik für Life Sciences	19 - 22
[WZ2036] Physiology of Humans, Animals and Plants Physiologie: Human, Tier, Pflanze	27 - 29
[SZ0815] Portuguese - Portuguese for Spanish speakers A1 + A2 Portugiesisch - Português para hispanofalantes A1 + A2	180 - 182

[WZ2033] Proteins, Protein-Engineering and Immunological Processes Proteine, Protein-Engineering und Immunologische Prozesse	61 - 63
R	
[CH0115] Reactivity of Organic Compounds Reaktivität organischer Verbindungen	43 - 44
[WZ2035] Regulatory and economic basics of biotechnology Rechtliche und wirtschaftliche Grundlagen der Biotechnologie	68 - 71
Required Courses Pflichtmodule	7
[SZ0909] Russian as language of origin from B1 Russisch als	187 - 189
Herkunftssprache ab B1	100 101
[SZ0901] Russian A1.1 Russisch A1.1 SZ0902] Russian A1.2 Russisch A1.2	183 - 184 185 - 186
S	
[WZ3096] Scientific Computing for Biological Sciences with Matlab	120 - 121
Scientific Computing for Biological Sciences with Matlab	
[SZ1201] Spanish A1 Spanisch A1	194 - 195
[SZ1207] Spanish A1 + A2.1 Spanisch A1 + A2.1	202 - 204
[SZ1202] Spanish A2.1 Spanisch A2.1	196 - 198
[SZ1203] Spanish A2.2 Spanisch A2.2	199 - 201
[SZ1218] Spanish B1.1 Spanisch B1.1	205 - 206
[WZ0402] Structural Bioinformatics Strukturbioinformatik [Structural	100 - 102
Bioinformatics]	400 404
[SZ1001] Swedish A1 Schwedisch A1	190 - 191
[SZ1002] Swedish A2 Schwedisch A2	192 - 193
Т	
[MCTS9003] Technology and Democracy Technik und Demokratie	112 - 113
IED01791 Technology. Nature and Society Technik. Natur und Gesellschaft	110 - 111